Menu Close

Solve-the-following-equation-simultaneously-and-find-the-stationary-points-2xy-2-c-2-4x-3-y-2-2xy-4-0-1-2x-2-yc-2-2x-4-y-4x-2-y-3-0-2-Please-I-need-a-well-detail-cal




Question Number 203565 by Mastermind last updated on 22/Jan/24
Solve the following equation simultaneously  and find the stationary points:  2xy^2 c^2  − 4x^3 y^2  − 2xy^4  = 0 -----(1)  2x^2 yc^2  − 2x^4 y − 4x^2 y^3  = 0 -----(2)      Please, I need a well detail calculation  Thank you
Solvethefollowingequationsimultaneouslyandfindthestationarypoints:2xy2c24x3y22xy4=0(1)2x2yc22x4y4x2y3=0(2)Please,IneedawelldetailcalculationThankyou
Answered by a.lgnaoui last updated on 22/Jan/24
(1)   2xy^2 (c^2 −2x^2 −y^2 )=0       (2)  2x^2 y(c^2 −x^2 −2)=0    (3)  { ((x^2 =c^2 −2)),((y^2 +2x^2 =c^2 )) :}y^2 =c^2 −2(c^2 −2)     ⇒   y^2 =  4−c^2       { ((x^2 =c^2 −2)),((y^2 =4−c^2     ⇒  x^2 +y^2 =2)) :}        y=(√(2−x^2 ))        =(√(4−c^2  ))    2−x^2 =4−c^2                                  x=(√(c^2 −2))     (x,y)={(0,0);((√(c^2 −2)) , (√(4−c^2 )) );         pour x=0  or y=0  c=(√2)                    x=0 and y=0   c=0     (x; y, c)={(0,0,0);(0, (√2) ,  (√2) );     (0,(√(4−c^2 )) ,c)((√(c^2 −2)) ,0,c)}            (1)−(2)⇒(c^2 x−x^3  −2x) −c^2 y−     +2x^2 y+y^3     =0  (y^3 −x^3 −c^2 (y−x)+2x(xy−1)=0  (y−x)[(x^2 +xy+y^2 −c^2 )+2x(xy−1)    y=(√(2−x^2 )) ⇒      ((√(2−x^2  )) −x)(2+x(√(2−x^2  )) −c^2 )+2x(x(√(2−x^2  )) −1)=0    ⇒2(√(2−x^2  )) +x(2−x^2 )−4x−c^2 +  2x^2 ((√(2−x^2  )) )=0    2(√(2−x^2 )) (x^2 +1)−2x(x^2 +1)−c^2 =0  2(x^2 +1)((√(2−x^2  )) −x)=c^2     (√(2−x^2 )) =(c^2 /(2(x^2 +1)))+x  2−x^2  =(c^4 /(4(x^2 +1)^2 ))+x^2 +((c^2 x)/((x^2 +1)))  8(x^2 +1)^4 −4c^2 x(x^2 +1)−c^4 =0    x=0     c=(√2)     ⇒   (0,0,(√2) )      S(Totale)=  {(0,0,0)(0,0,(√2) )(0, (√(2,))  (√2) ) (0 ,(√(4−c^2  )) ,0),  ((√(c^2 −2)) ,0, c)}
(1)2xy2(c22x2y2)=0(2)2x2y(c2x22)=0(3){x2=c22y2+2x2=c2y2=c22(c22)y2=4c2{x2=c22y2=4c2x2+y2=2y=2x2=4c22x2=4c2x=c22(x,y)={(0,0);(c22,4c2);pourx=0ory=0c=2x=0andy=0c=0(x;y,c)={(0,0,0);(0,2,2);(0,4c2,c)(c22,0,c)}(1)(2)(c2xx32x)c2y+2x2y+y3=0(y3x3c2(yx)+2x(xy1)=0(yx)[(x2+xy+y2c2)+2x(xy1)y=2x2(2x2x)(2+x2x2c2)+2x(x2x21)=022x2+x(2x2)4xc2+2x2(2x2)=022x2(x2+1)2x(x2+1)c2=02(x2+1)(2x2x)=c22x2=c22(x2+1)+x2x2=c44(x2+1)2+x2+c2x(x2+1)8(x2+1)44c2x(x2+1)c4=0x=0c=2(0,0,2)S(Totale)={(0,0,0)(0,0,2)(0,2,2)(0,4c2,0),(c22,0,c)}

Leave a Reply

Your email address will not be published. Required fields are marked *