Solve-the-following-equation-simultaneously-and-find-the-stationary-points-2xy-2-c-2-4x-3-y-2-2xy-4-0-1-2x-2-yc-2-2x-4-y-4x-2-y-3-0-2-Please-I-need-a-well-detail-cal Tinku Tara January 22, 2024 Others 0 Comments FacebookTweetPin Question Number 203565 by Mastermind last updated on 22/Jan/24 Solvethefollowingequationsimultaneouslyandfindthestationarypoints:2xy2c2−4x3y2−2xy4=0—–(1)2x2yc2−2x4y−4x2y3=0—–(2)Please,IneedawelldetailcalculationThankyou Answered by a.lgnaoui last updated on 22/Jan/24 (1)2xy2(c2−2x2−y2)=0(2)2x2y(c2−x2−2)=0(3){x2=c2−2y2+2x2=c2y2=c2−2(c2−2)⇒y2=4−c2{x2=c2−2y2=4−c2⇒x2+y2=2y=2−x2=4−c22−x2=4−c2x=c2−2(x,y)={(0,0);(c2−2,4−c2);pourx=0ory=0c=2x=0andy=0c=0(x;y,c)={(0,0,0);(0,2,2);(0,4−c2,c)(c2−2,0,c)}(1)−(2)⇒(c2x−x3−2x)−c2y−+2x2y+y3=0(y3−x3−c2(y−x)+2x(xy−1)=0(y−x)[(x2+xy+y2−c2)+2x(xy−1)y=2−x2⇒(2−x2−x)(2+x2−x2−c2)+2x(x2−x2−1)=0⇒22−x2+x(2−x2)−4x−c2+2x2(2−x2)=022−x2(x2+1)−2x(x2+1)−c2=02(x2+1)(2−x2−x)=c22−x2=c22(x2+1)+x2−x2=c44(x2+1)2+x2+c2x(x2+1)8(x2+1)4−4c2x(x2+1)−c4=0x=0c=2⇒(0,0,2)S(Totale)={(0,0,0)(0,0,2)(0,2,2)(0,4−c2,0),(c2−2,0,c)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: P-is-a-prime-number-P-gt-1000-If-P-r-mod-1000-how-many-value-of-r-Next Next post: 0-sin-3-x-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.