Question Number 203615 by muneer0o0 last updated on 23/Jan/24
$${I}\:=\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\left({x}\right)}{dx} \\ $$
Answered by witcher3 last updated on 25/Jan/24
$$\mathrm{I}=\mathrm{Re}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{isin}\left(\mathrm{x}\right)}\mathrm{dx}=\mathrm{Re}\left(\mathrm{B}\right) \\ $$$$\mathrm{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2x}^{\mathrm{2}} }{\mathrm{2}+\mathrm{e}^{\mathrm{ix}} −\mathrm{e}^{−\mathrm{ix}} }=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2x}^{\mathrm{2}} \mathrm{e}^{\mathrm{ix}} }{\left(\mathrm{e}^{\mathrm{2ix}} +\mathrm{2e}^{\mathrm{ix}} −\mathrm{1}\right)}\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2x}^{\mathrm{2}} \mathrm{e}^{\mathrm{ix}} }{\left(\mathrm{e}^{\mathrm{ix}} +\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(\mathrm{e}^{\mathrm{ix}} +\mathrm{1}−\sqrt{\mathrm{2}}\right)}\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{x}^{\mathrm{2}} \left[.\left(\frac{−\mathrm{1}−\sqrt{\mathrm{2}}}{−\mathrm{2}\sqrt{\mathrm{2}}}\right).\frac{\mathrm{1}}{\left(\mathrm{e}^{\mathrm{ix}} +\mathrm{1}+\sqrt{\mathrm{2}}\right)}+\frac{−\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{e}^{\mathrm{ix}} +\mathrm{1}−\sqrt{\mathrm{2}}\right)}\right]\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{x}^{\mathrm{2}} }{\frac{\mathrm{e}^{\mathrm{ix}} }{\mathrm{1}+\sqrt{\mathrm{2}}}+\mathrm{1}}\mathrm{dx}+\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{ix}} }{\mathrm{1}+\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{e}^{−\mathrm{ix}} }\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \Sigma\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{k}} }.\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{ikx}} \mathrm{dx}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} \mathrm{e}^{−\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{x}} \mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{ikx}} \mathrm{dx}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} \mathrm{e}^{−\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{x}} \mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{we}\:\mathrm{want}\:\mathrm{Re}\:\left(\mathrm{B}\right);\int\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{ikx}} \mathrm{dxor}\:\int\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{ikx}} \mathrm{dx}\:\mathrm{didnt}\:\mathrm{change}\:\mathrm{realart}\Rightarrow \\ $$$$\mathrm{B}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{\pi^{\mathrm{3}} }{\mathrm{24}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{\mathrm{k}+\mathrm{1}} \mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{x}} +\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} \mathrm{e} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\pi^{\mathrm{3}} }{\mathrm{24}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}\:\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2k}+\mathrm{2}} \mathrm{e}^{−\mathrm{i}\left(\mathrm{2k}+\mathrm{2}\right)\mathrm{x}} \mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\pi^{\mathrm{3}} }{\mathrm{24}}+\sqrt{\mathrm{2}}.\Sigma\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2k}+\mathrm{2}} \int_{\mathrm{0}} ^{\pi} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{y}} .\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{8}}\mathrm{dy} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\:\mathrm{24}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\Sigma\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2k}+\mathrm{2}} \left\{.\left[\frac{\mathrm{y}^{\mathrm{2}} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{y}} }{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\pi} −\frac{\mathrm{2}}{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)}\int_{\mathrm{0}} ^{\pi} \mathrm{ye}^{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{y}} \mathrm{dy}\right. \\ $$$$=\frac{\pi^{\mathrm{3}} }{\:\sqrt{\mathrm{242}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\Sigma\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2k}+\mathrm{2}} .\left[\frac{\mathrm{ye}^{\mathrm{i}\left(\mathrm{k}+\mathrm{1}\right)\mathrm{y}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\pi^{\mathrm{3}} }{\:\mathrm{24}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\Sigma\frac{\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{k}+\mathrm{1}} \pi\left(−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\pi^{\mathrm{3}} }{\:\mathrm{24}\sqrt{\mathrm{2}}}+\frac{\pi}{\:\sqrt{\mathrm{2}}}\mathrm{Li}_{\mathrm{2}} \left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right);\mathrm{Li}_{\mathrm{s}} \left(\mathrm{z}\right)=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{z}^{\mathrm{k}+\mathrm{1}} }{\left(\mathrm{k}+\mathrm{1}\right)^{\mathrm{s}} },\forall\mid\mathrm{z}\mid<\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}=\frac{\pi^{\mathrm{3}} }{\mathrm{24}\sqrt{\mathrm{2}}}+\frac{\pi}{\:\sqrt{\mathrm{2}}}\mathrm{Li}_{\mathrm{2}} \left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}\right) \\ $$