I-0-pi-2-x-2-1-sin-2-x-dx- Tinku Tara January 23, 2024 None 0 Comments FacebookTweetPin Question Number 203615 by muneer0o0 last updated on 23/Jan/24 I=∫0π/2x21+sin2(x)dx Answered by witcher3 last updated on 25/Jan/24 I=Re∫0π2x21+isin(x)dx=Re(B)B=∫0π22x22+eix−e−ix=∫0π22x2eix(e2ix+2eix−1)dx=∫0π22x2eix(eix+1+2)(eix+1−2)dx=2∫0π2x2[.(−1−2−22).1(eix+1+2)+−1+222(eix+1−2)]dx=12∫0π2x2eix1+2+1dx+2−12.∫0π2x2e−ix1+(1−2)e−ixdx=12∫0π2Σ(−1)k(1+2)k.x2eikxdx+12∫0π2(2−1)k+1e−i(k+1)xx2dx=12∫0π2∑k⩾0x2(1−2)kx2eikxdx+12∫0π2(2−1)k+1e−i(k+1)xx2dxwewantRe(B);∫x2eikxdxor∫x2e−ikxdxdidntchangerealart⇒B=12(π324)+12∑k⩾0(1−2)k+1x2e−i(k+1)x+(2−1)k+1e=12.π324+22∑k⩾0(2−1)2k+2e−i(2k+2)xx2dx=12.π324+2.Σ(2−1)2k+2∫0πei(k+1)y.y28dy=π3242+122Σ(2−1)2k+2{.[y2ei(k+1)yi(k+1)]0π−2i(k+1)∫0πyei(k+1)ydy=π3242+12Σ(2−1)2k+2.[yei(k+1)y(k+1)2]0π=π3242+12Σ(3−22)k+1π(−1)k+1(k+1)2=π3242+π2Li2(22−3);Lis(z)=∑k⩾0zk+1(k+1)s,∀∣z∣<1∫0π2x21+sin2(x)=π3242+π2Li2(22−3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-203625Next Next post: Question-203613 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.