Menu Close

I-0-pi-2-x-2-1-sin-2-x-dx-




Question Number 203615 by muneer0o0 last updated on 23/Jan/24
I = ∫_0 ^(π/2) (x^2 /(1+sin^2  (x)))dx
I=0π/2x21+sin2(x)dx
Answered by witcher3 last updated on 25/Jan/24
I=Re∫_0 ^(π/2) (x^2 /(1+isin(x)))dx=Re(B)  B=∫_0 ^(π/2) ((2x^2 )/(2+e^(ix) −e^(−ix) ))=∫_0 ^(π/2) ((2x^2 e^(ix) )/((e^(2ix) +2e^(ix) −1)))dx=∫_0 ^(π/2) ((2x^2 e^(ix) )/((e^(ix) +1+(√2))(e^(ix) +1−(√2))))dx  =2∫_0 ^(π/2) x^2 [.(((−1−(√2))/(−2(√2)))).(1/((e^(ix) +1+(√2))))+((−1+(√2))/(2(√2)(e^(ix) +1−(√2))))]dx  =(1/( (√2)))∫_0 ^(π/2) (x^2 /((e^(ix) /(1+(√2)))+1))dx+(((√2)−1)/( (√2))).∫_0 ^(π/2) ((x^2 e^(−ix) )/(1+(1−(√2))e^(−ix) ))dx  =(1/( (√2)))∫_0 ^(π/2) Σ(((−1)^k )/((1+(√2))^k )).x^2 e^(ikx) dx+(1/( (√2)))∫_0 ^(π/2) ((√2)−1)^(k+1) e^(−i(k+1)x) x^2 dx  =(1/( (√2)))∫_0 ^(π/2) Σ_(k≥0) x^2 (1−(√2))^k x^2 e^(ikx) dx+(1/( (√2)))∫_0 ^(π/2) ((√2)−1)^(k+1) e^(−i(k+1)x) x^2 dx  we want Re (B);∫x^2 e^(ikx) dxor ∫x^2 e^(−ikx) dx didnt change realart⇒  B=(1/( (√2)))((π^3 /(24)))+(1/( (√2)))Σ_(k≥0) (1−(√2))^(k+1) x^2 e^(−i(k+1)x) +((√2)−1)^(k+1) e  =(1/( (√2))).(π^3 /(24))+(2/( (√2))) Σ_(k≥0) ((√2)−1)^(2k+2) e^(−i(2k+2)x) x^2 dx  =(1/( (√2))).(π^3 /(24))+(√2).Σ((√2)−1)^(2k+2) ∫_0 ^π e^(i(k+1)y) .(y^2 /8)dy  =(π^3 /( 24(√2)))+(1/(2(√2)))Σ((√2)−1)^(2k+2) {.[((y^2 e^(i(k+1)y) )/(i(k+1)))]_0 ^π −(2/(i(k+1)))∫_0 ^π ye^(i(k+1)y) dy  =(π^3 /( (√(242))))+(1/( (√2)))Σ((√2)−1)^(2k+2) .[((ye^(i(k+1)y) )/((k+1)^2 ))]_0 ^π   =(π^3 /( 24(√2)))+(1/( (√2)))Σ(((3−2(√2))^(k+1) π(−1)^(k+1) )/((k+1)^2 ))  =(π^3 /( 24(√2)))+(π/( (√2)))Li_2 (2(√2)−3);Li_s (z)=Σ_(k≥0) (z^(k+1) /((k+1)^s )),∀∣z∣<1  ∫_0 ^(π/2) (x^2 /(1+sin^2 (x)))=(π^3 /(24(√2)))+(π/( (√2)))Li_2 (2(√2)−3)
I=Re0π2x21+isin(x)dx=Re(B)B=0π22x22+eixeix=0π22x2eix(e2ix+2eix1)dx=0π22x2eix(eix+1+2)(eix+12)dx=20π2x2[.(1222).1(eix+1+2)+1+222(eix+12)]dx=120π2x2eix1+2+1dx+212.0π2x2eix1+(12)eixdx=120π2Σ(1)k(1+2)k.x2eikxdx+120π2(21)k+1ei(k+1)xx2dx=120π2k0x2(12)kx2eikxdx+120π2(21)k+1ei(k+1)xx2dxwewantRe(B);x2eikxdxorx2eikxdxdidntchangerealartB=12(π324)+12k0(12)k+1x2ei(k+1)x+(21)k+1e=12.π324+22k0(21)2k+2ei(2k+2)xx2dx=12.π324+2.Σ(21)2k+20πei(k+1)y.y28dy=π3242+122Σ(21)2k+2{.[y2ei(k+1)yi(k+1)]0π2i(k+1)0πyei(k+1)ydy=π3242+12Σ(21)2k+2.[yei(k+1)y(k+1)2]0π=π3242+12Σ(322)k+1π(1)k+1(k+1)2=π3242+π2Li2(223);Lis(z)=k0zk+1(k+1)s,z∣<10π2x21+sin2(x)=π3242+π2Li2(223)

Leave a Reply

Your email address will not be published. Required fields are marked *