lim-x-1-2-x-tan-pix-2- Tinku Tara January 24, 2024 None 0 Comments FacebookTweetPin Question Number 203651 by Davidtim last updated on 24/Jan/24 limx→1(2−x)tan(πx2)=? Answered by Mathspace last updated on 24/Jan/24 changement1−x=tgivef(x)=(2−x)tan(πx2)=f(1−t)=(2−(1−t))tan(π2(1−t))=(1+t)tan(π2−πt2)=(1+t)1tan(πt2)(x→1⇔t→0)ln(f(1−t))=1tan(πt2)ln(1+t)∼2πt×t(t∈V(0)=2πsolim(ln(f(1−t))=2π⇒limt→0f(1−t)=e2π⇒limx→1f(x)=e2π Answered by MM42 last updated on 24/Jan/24 1−x=u⇒limu→0(1+u)cot(π2u)⇒limu→0((1+u)1u)usinπu2×cosπu2=e2π✓ Answered by Calculusboy last updated on 26/Jan/24 Solution:bysubdirectly,weget(1∞)indeterminantlety=(2−x)tan(πx2)(applylogtobothsides)logy=log(2−x)tan(πx2)logy=limtanx→1(πx2)log(2−x)logy=limx→1ddx[log(2−x)]ddx[1tan(πx2)]⇒logy=limx→1−12−xddx[cot(πx2)]logy=limx→1−12−x[−π2cosec2(πx2)]logy=−11−π2limx→1[cosec(πx2)]2logy=−1−π2⋅1⇒logy=2πy=e2π∴limx→1(2−x)tan(πx2)=e2π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-203613Next Next post: Question-203634 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.