Question Number 203651 by Davidtim last updated on 24/Jan/24
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\mathrm{2}−{x}\right)^{{tan}\left(\frac{\pi{x}}{\mathrm{2}}\right)} =? \\ $$
Answered by Mathspace last updated on 24/Jan/24
$${changement}\:\mathrm{1}−{x}={t}\:{give} \\ $$$${f}\left({x}\right)=\left(\mathrm{2}−{x}\right)^{{tan}\left(\frac{\pi{x}}{\mathrm{2}}\right)} \\ $$$$={f}\left(\mathrm{1}−{t}\right)=\left(\mathrm{2}−\left(\mathrm{1}−{t}\right)\right)^{{tan}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−{t}\right)\right)} \\ $$$$=\left(\mathrm{1}+{t}\right)^{{tan}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi{t}}{\mathrm{2}}\right)} \\ $$$$=\left(\mathrm{1}+{t}\right)^{\frac{\mathrm{1}}{{tan}\left(\frac{\pi{t}}{\mathrm{2}}\right)}} \:\:\:\:\:\:\:\left({x}\rightarrow\mathrm{1}\Leftrightarrow{t}\rightarrow\mathrm{0}\right) \\ $$$${ln}\left({f}\left(\mathrm{1}−{t}\right)\right)=\frac{\mathrm{1}}{{tan}\left(\frac{\pi{t}}{\mathrm{2}}\right)}{ln}\left(\mathrm{1}+{t}\right) \\ $$$$\sim\frac{\mathrm{2}}{\pi{t}}×{t}\:\:\:\:\left({t}\in{V}\left(\mathrm{0}\right)\right. \\ $$$$=\frac{\mathrm{2}}{\pi}\:{so} \\ $$$${lim}\left({ln}\left({f}\left(\mathrm{1}−{t}\right)\right)=\frac{\mathrm{2}}{\pi}\:\Rightarrow\right. \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} {f}\left(\mathrm{1}−{t}\right)={e}^{\frac{\mathrm{2}}{\pi}} \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{1}} \:{f}\left({x}\right)\:={e}^{\frac{\mathrm{2}}{\pi}} \\ $$
Answered by MM42 last updated on 24/Jan/24
$$\mathrm{1}−{x}={u} \\ $$$$\Rightarrow{lim}_{{u}\rightarrow\mathrm{0}} \:\left(\mathrm{1}+{u}\right)^{{cot}\left(\frac{\pi}{\mathrm{2}}{u}\right)} \\ $$$$\Rightarrow{lim}_{{u}\rightarrow\mathrm{0}} \:\left(\left(\mathrm{1}+{u}\right)^{\frac{\mathrm{1}}{{u}}} \right)^{\frac{{u}}{{sin}\:\frac{\pi{u}}{\mathrm{2}}}×{cos}\frac{\pi{u}}{\mathrm{2}}} \\ $$$$={e}^{\frac{\mathrm{2}}{\pi}} \:\:\checkmark \\ $$
Answered by Calculusboy last updated on 26/Jan/24
$$\boldsymbol{{Solution}}:\:\boldsymbol{{by}}\:\boldsymbol{{sub}}\:\boldsymbol{{directly}},\boldsymbol{{we}}\:\boldsymbol{{get}}\:\left(\mathrm{1}^{\infty} \right)\boldsymbol{{indeterminant}} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{y}}=\left(\mathrm{2}−\boldsymbol{{x}}\right)^{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)} \:\:\:\left(\boldsymbol{{apply}}\:\boldsymbol{{log}}\:\boldsymbol{{to}}\:\boldsymbol{{both}}\:\boldsymbol{{sides}}\right) \\ $$$$\boldsymbol{{logy}}=\boldsymbol{{log}}\left(\mathrm{2}−\boldsymbol{{x}}\right)^{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)} \\ $$$$\boldsymbol{{logy}}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}tan}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)\boldsymbol{{log}}\left(\mathrm{2}−\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{logy}}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}}}\frac{\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left[\boldsymbol{{log}}\left(\mathrm{2}−\boldsymbol{{x}}\right)\right]}{\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left[\frac{\mathrm{1}}{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)}\right]}\:\:\:\Rightarrow\:\:\boldsymbol{{logy}}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}}}\frac{\frac{−\mathrm{1}}{\mathrm{2}−\boldsymbol{{x}}}}{\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left[\boldsymbol{{cot}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)\right]} \\ $$$$\boldsymbol{{logy}}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}}}\frac{\frac{−\mathrm{1}}{\mathrm{2}−\boldsymbol{{x}}}}{\left[−\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{cosec}}^{\mathrm{2}} \left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)\right]} \\ $$$$\boldsymbol{{logy}}=\frac{\frac{−\mathrm{1}}{\mathrm{1}}}{−\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}}}\left[\boldsymbol{{cosec}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)\right]^{\mathrm{2}} } \\ $$$$\boldsymbol{{logy}}=\frac{−\mathrm{1}}{−\frac{\boldsymbol{\pi}}{\mathrm{2}}\centerdot\mathrm{1}}\:\:\Rightarrow\:\:\boldsymbol{{logy}}=\frac{\mathrm{2}}{\boldsymbol{\pi}} \\ $$$$\boldsymbol{{y}}=\boldsymbol{{e}}^{\frac{\mathrm{2}}{\boldsymbol{\pi}}} \\ $$$$\therefore\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{1}} {\boldsymbol{{m}}}\left(\mathrm{2}−\boldsymbol{{x}}\right)^{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi{x}}}{\mathrm{2}}\right)} =\boldsymbol{{e}}^{\frac{\mathrm{2}}{\boldsymbol{\pi}}} \\ $$$$ \\ $$