Menu Close

lim-x-1-2-x-tan-pix-2-




Question Number 203651 by Davidtim last updated on 24/Jan/24
lim_(x→1) (2−x)^(tan(((πx)/2))) =?
limx1(2x)tan(πx2)=?
Answered by Mathspace last updated on 24/Jan/24
changement 1−x=t give  f(x)=(2−x)^(tan(((πx)/2)))   =f(1−t)=(2−(1−t))^(tan((π/2)(1−t)))   =(1+t)^(tan((π/2)−((πt)/2)))   =(1+t)^(1/(tan(((πt)/2))))        (x→1⇔t→0)  ln(f(1−t))=(1/(tan(((πt)/2))))ln(1+t)  ∼(2/(πt))×t    (t∈V(0)  =(2/π) so  lim(ln(f(1−t))=(2/π) ⇒  lim_(t→0) f(1−t)=e^(2/π)   ⇒lim_(x→1)  f(x) =e^(2/π)
changement1x=tgivef(x)=(2x)tan(πx2)=f(1t)=(2(1t))tan(π2(1t))=(1+t)tan(π2πt2)=(1+t)1tan(πt2)(x1t0)ln(f(1t))=1tan(πt2)ln(1+t)2πt×t(tV(0)=2πsolim(ln(f(1t))=2πlimt0f(1t)=e2πlimx1f(x)=e2π
Answered by MM42 last updated on 24/Jan/24
1−x=u  ⇒lim_(u→0)  (1+u)^(cot((π/2)u))   ⇒lim_(u→0)  ((1+u)^(1/u) )^((u/(sin ((πu)/2)))×cos((πu)/2))   =e^(2/π)   ✓
1x=ulimu0(1+u)cot(π2u)limu0((1+u)1u)usinπu2×cosπu2=e2π
Answered by Calculusboy last updated on 26/Jan/24
Solution: by sub directly,we get (1^∞ )indeterminant  let y=(2−x)^(tan(((𝛑x)/2)))    (apply log to both sides)  logy=log(2−x)^(tan(((𝛑x)/2)))   logy=lim_(x→1) tan(((𝛑x)/2))log(2−x)  logy=lim_(x→1) (((d/dx)[log(2−x)])/((d/dx)[(1/(tan(((𝛑x)/2))))]))   ⇒  logy=lim_(x→1) (((−1)/(2−x))/((d/dx)[cot(((𝛑x)/2))]))  logy=lim_(x→1) (((−1)/(2−x))/([−(𝛑/2)cosec^2 (((𝛑x)/2))]))  logy=(((−1)/1)/(−(𝛑/2)lim_(x→1) [cosec(((𝛑x)/2))]^2 ))  logy=((−1)/(−(𝛑/2)∙1))  ⇒  logy=(2/𝛑)  y=e^(2/𝛑)   ∴lim_(x→1) (2−x)^(tan(((𝛑x)/2))) =e^(2/𝛑)
Solution:bysubdirectly,weget(1)indeterminantlety=(2x)tan(πx2)(applylogtobothsides)logy=log(2x)tan(πx2)logy=limtanx1(πx2)log(2x)logy=limx1ddx[log(2x)]ddx[1tan(πx2)]logy=limx112xddx[cot(πx2)]logy=limx112x[π2cosec2(πx2)]logy=11π2limx1[cosec(πx2)]2logy=1π21logy=2πy=e2πlimx1(2x)tan(πx2)=e2π

Leave a Reply

Your email address will not be published. Required fields are marked *