Question Number 203681 by SANOGO last updated on 25/Jan/24
$$\int_{\mathrm{1}} ^{+{oo}} \frac{\mathrm{1}}{{x}\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Answered by Frix last updated on 25/Jan/24
$${t}=\frac{\mathrm{2}{x}+\mathrm{1}+\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{2}+\sqrt{\mathrm{3}}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{{t}−\sqrt{\mathrm{3}}}−\frac{\mathrm{3}}{\mathrm{3}{t}+\sqrt{\mathrm{3}}}{dt}=\left[\mathrm{ln}\:\frac{{t}−\sqrt{\mathrm{3}}}{\mathrm{3}{t}+\sqrt{\mathrm{3}}}\right]_{\mathrm{2}+\sqrt{\mathrm{3}}} ^{\infty} = \\ $$$$=\mathrm{ln}\:\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\right)\:−\mathrm{ln}\:\mathrm{3} \\ $$
Answered by esmaeil last updated on 26/Jan/24
$$\underset{\mathrm{1}} {\int}^{+\infty} \frac{{dx}}{{x}\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}}= \\ $$$$ \\ $$$$\:\:^{\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{2}{dx}}{{x}\sqrt{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\int_{\mathrm{1}} ^{+\infty} \frac{{dx}}{\:{x}\sqrt{\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\overset{\mathrm{2}} {\right)}+\mathrm{1}}}=\Omega} \\ $$$$\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}={tan}\theta\rightarrow{dx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}{cos}^{\mathrm{2}} \theta}{d}\theta\rightarrow \\ $$$$\Omega=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\frac{{d}\theta}{{cos}^{\mathrm{2}} \theta}}{{tan}\theta×\frac{\mathrm{1}}{{vos}\theta}}= \\ $$$$=\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} {cosec}\theta{d}\theta= \\ $$$$\left.{ln}\mid{cosec}\theta−{cot}\theta\mid\right]_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} = \\ $$$${ln}\mid\left(\mathrm{1}−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\right)\mid= \\ $$$${ln}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right) \\ $$$${m} \\ $$