Menu Close

Question-203694




Question Number 203694 by Numsey last updated on 26/Jan/24
Answered by Calculusboy last updated on 26/Jan/24
Solution: by sub directly,we get (0/0)(indeterminant)  let 𝚫=lim_(xβ†’0) (((1+x)^5 )/x^2 )βˆ’lim_(xβ†’0) (e^(5x) /x^2 )+lim_(xβ†’0) ((sin(x^2 ))/x^2 )  𝚫=lim_(xβ†’0) ((5(1+x)^4 )/(2x))βˆ’lim_(xβ†’0) ((5e^(5x) )/(2x))+1  𝚫=lim_(xβ†’0) ((20(1+x)^3 )/2)βˆ’lim_(xβ†’0) ((25e^(5x) )/2)+1  𝚫=10lim_(xβ†’0) (1+x)^3 βˆ’((25)/2)lim_(xβ†’0) e^(5x) +1  𝚫=10βˆ’((25)/2)+1  𝚫=βˆ’(3/2)=βˆ’1.5  ∴lim_(xβ†’0) (((1+x)^5 βˆ’e^(5x) +sinx^2 )/x^2 )=βˆ’(3/2)=βˆ’1.5
$$\boldsymbol{{Solution}}:\:\boldsymbol{{by}}\:\boldsymbol{{sub}}\:\boldsymbol{{directly}},\boldsymbol{{we}}\:\boldsymbol{{get}}\:\frac{\mathrm{0}}{\mathrm{0}}\left(\boldsymbol{{indeterminant}}\right) \\ $$$$\boldsymbol{{let}}\:\boldsymbol{\Delta}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{5}} }{\boldsymbol{{x}}^{\mathrm{2}} }βˆ’\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{e}}^{\mathrm{5}\boldsymbol{{x}}} }{\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} \right)}{\boldsymbol{{x}}^{\mathrm{2}} } \\ $$$$\boldsymbol{\Delta}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\mathrm{5}\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{4}} }{\mathrm{2}\boldsymbol{{x}}}βˆ’\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\mathrm{5}\boldsymbol{{e}}^{\mathrm{5}\boldsymbol{{x}}} }{\mathrm{2}\boldsymbol{{x}}}+\mathrm{1} \\ $$$$\boldsymbol{\Delta}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\mathrm{20}\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{3}} }{\mathrm{2}}βˆ’\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\mathrm{25}\boldsymbol{{e}}^{\mathrm{5}\boldsymbol{{x}}} }{\mathrm{2}}+\mathrm{1} \\ $$$$\boldsymbol{\Delta}=\mathrm{10}\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{3}} βˆ’\frac{\mathrm{25}}{\mathrm{2}}\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}e}}^{\mathrm{5}\boldsymbol{{x}}} +\mathrm{1} \\ $$$$\boldsymbol{\Delta}=\mathrm{10}βˆ’\frac{\mathrm{25}}{\mathrm{2}}+\mathrm{1} \\ $$$$\boldsymbol{\Delta}=βˆ’\frac{\mathrm{3}}{\mathrm{2}}=βˆ’\mathrm{1}.\mathrm{5} \\ $$$$\therefore\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{5}} βˆ’\boldsymbol{{e}}^{\mathrm{5}\boldsymbol{{x}}} +\boldsymbol{{sinx}}^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{2}} }=βˆ’\frac{\mathrm{3}}{\mathrm{2}}=βˆ’\mathrm{1}.\mathrm{5} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *