Question Number 203716 by professorleiciano last updated on 26/Jan/24
Answered by AST last updated on 26/Jan/24
$${Let}\:{AP}\:{and}\:{DC}\:{meet}\:{at}\:{F},{then}\:\bigtriangleup{BPA}\approx\bigtriangleup{CPF} \\ $$$$\Rightarrow\frac{{BA}}{{CF}}=\frac{{BP}}{{CP}}\Rightarrow\frac{{s}}{{CF}}=\frac{\mathrm{8}}{{s}−\mathrm{8}}\Rightarrow{CF}=\frac{{s}\left({s}−\mathrm{8}\right)}{\mathrm{8}}…\left({i}\right) \\ $$$${in}\:\bigtriangleup{AFD};{AQ}\:{bisects}\:\angle{FAD}\Rightarrow\frac{{AD}}{{DQ}}=\frac{{AF}}{{FQ}} \\ $$$$\Rightarrow\frac{{s}}{\mathrm{9}}=\frac{\sqrt{{s}^{\mathrm{2}} +\left({s}+{CF}\right)^{\mathrm{2}} }}{{CF}+{s}−\mathrm{9}}\Rightarrow\frac{{s}}{\mathrm{9}}=\frac{\sqrt{{s}^{\mathrm{2}} +\left({s}+\frac{{s}^{\mathrm{2}} −\mathrm{8}{s}}{\mathrm{8}}\right)^{\mathrm{2}} }}{\frac{{s}^{\mathrm{2}} −\mathrm{8}{s}}{\mathrm{8}}+{s}−\mathrm{9}} \\ $$$$\Rightarrow\frac{{s}}{\mathrm{9}}=\frac{\sqrt{{s}^{\mathrm{2}} +\frac{{s}^{\mathrm{4}} }{\mathrm{64}}}}{\frac{{s}^{\mathrm{2}} −\mathrm{72}}{\mathrm{8}}}\Rightarrow\frac{\mathrm{1}}{\mathrm{9}}=\:\frac{\mathrm{8}\sqrt{\left(\mathrm{1}+\frac{{s}^{\mathrm{2}} }{\mathrm{64}}\right)}}{{s}^{\mathrm{2}} −\mathrm{72}}\Rightarrow{s}=\mathrm{15} \\ $$$${PQ}=\sqrt{\left({s}−\mathrm{8}\right)^{\mathrm{2}} +\left({s}−\mathrm{9}\right)^{\mathrm{2}} }=\sqrt{\mathrm{85}}{cm} \\ $$
Answered by professorleiciano last updated on 26/Jan/24
Commented by mr W last updated on 26/Jan/24
$${you}\:{didn}'{t}\:{show}\:{why}\:{AP}=\mathrm{8}+\mathrm{9}=\mathrm{17}. \\ $$
Commented by esmaeil last updated on 26/Jan/24
$${profesor},¿{por}\:{que}^{'\:} {no}\:{respondi}\overset{'} {{o}}\:{la} \\ $$$${pregunta}\:{de}\:{nadie}? \\ $$
Answered by mr W last updated on 26/Jan/24
Commented by mr W last updated on 26/Jan/24
$$\angle{AEB}=\angle{AQD}=\gamma+\alpha=\angle{EAB} \\ $$$$\Rightarrow{PA}={PE}=\mathrm{9}+\mathrm{8}=\mathrm{17} \\ $$$${AB}=\sqrt{\mathrm{17}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }=\mathrm{15} \\ $$$${PC}=\mathrm{15}−\mathrm{8}=\mathrm{7} \\ $$$${QC}=\mathrm{15}−\mathrm{9}=\mathrm{6} \\ $$$${PQ}=\sqrt{\mathrm{7}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\sqrt{\mathrm{85}} \\ $$