determine-whether-the-series-is-convergent-or-divergent-n-1-n-4n-2-1- Tinku Tara January 27, 2024 Algebra 0 Comments FacebookTweetPin Question Number 203774 by Calculusboy last updated on 27/Jan/24 determinewhethertheseriesisconvergentordivergent∑∞n=1n4n2+1 Answered by witcher3 last updated on 27/Jan/24 n4n2+1⩾n1+4n2+4n=n2n+1=3n3(2n+1)>2n+13(2n+1)⇒Σn4n2+1>Σ13Dv Answered by Mathspace last updated on 30/Jan/24 n4n2+1=n2n1+14n2=121+14n2wehave(1+x)α=1+αx+α(α−1)2x2+o(x2)⇒11+x=(1+x)−12=1−x2+12(−12)(−12−1)x2+o(x2)=1−x2−14×−32x2+o(x2)=1−x2+38x2+o(x2)soun=121+14n2=12−116n2+316×116n4+o(1n4)estundev.assymtotiquedeunonalimun=12≠0⇒Σunestdivergente. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-203742Next Next post: Question-203772 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.