Menu Close

determine-whether-the-series-is-convergent-or-divergent-n-1-n-4n-2-1-




Question Number 203774 by Calculusboy last updated on 27/Jan/24
determine whether the series is  convergent or divergent  𝚺_(n=1) ^∞ (n/( (√(4n^2 +1))))
determinewhethertheseriesisconvergentordivergentn=1n4n2+1
Answered by witcher3 last updated on 27/Jan/24
(n/( (√(4n^2 +1))))≥(n/( (√(1+4n^2 +4n))))=(n/(2n+1))=((3n)/(3(2n+1)))>((2n+1)/(3(2n+1)))  ⇒Σ(n/( (√(4n^2 +1))))>Σ(1/3) Dv
n4n2+1n1+4n2+4n=n2n+1=3n3(2n+1)>2n+13(2n+1)Σn4n2+1>Σ13Dv
Answered by Mathspace last updated on 30/Jan/24
(n/( (√(4n^2 +1))))=(n/(2n(√(1+(1/(4n^2 ))))))=(1/(2(√(1+(1/(4n^2 ))))))  we have (1+x)^α =1+αx +((α(α−1))/2)x^2 +o(x^2 )⇒  (1/( (√(1+x))))=(1+x)^(−(1/2))   =1−(x/2)+(1/2)(−(1/2))(−(1/2)−1)x^2 +o(x^2 )  =1−(x/2)−(1/4)×((−3)/2) x^2 +o(x^2 )  =1−(x/2)+(3/8)x^2 +o(x^2 )so  u_n =(1/( 2(√(1+(1/(4n^2 ))))))=(1/2)−(1/(16n^2 ))+(3/(16))×(1/(16n^4 ))+o((1/n^4 ))  est un dev.assymtotique de  u_n     ona lim u_n =(1/2) ≠0 ⇒  Σu_n  est divergente.
n4n2+1=n2n1+14n2=121+14n2wehave(1+x)α=1+αx+α(α1)2x2+o(x2)11+x=(1+x)12=1x2+12(12)(121)x2+o(x2)=1x214×32x2+o(x2)=1x2+38x2+o(x2)soun=121+14n2=12116n2+316×116n4+o(1n4)estundev.assymtotiquedeunonalimun=120Σunestdivergente.

Leave a Reply

Your email address will not be published. Required fields are marked *