Menu Close

Question-203750




Question Number 203750 by patrice last updated on 27/Jan/24
Answered by witcher3 last updated on 27/Jan/24
((4(k+2)−k)/(k(k+2)2^k ))=(4/(k.2^k ))−(1/((k+2)2^k ))=(1/(k.2^(k−2) ))−(1/((k+2)2^k ))=V_k −V_(k+2)   s_n =Σ(V_k −V_(k+2) )=V_1 +V_2 −V_(n+2) −V_(n+1)   =(5/2)−(1/((n+2)2^n ))−(1/((n+1)2^(n−1) ))
$$\frac{\mathrm{4}\left(\mathrm{k}+\mathrm{2}\right)−\mathrm{k}}{\mathrm{k}\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{4}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{1}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}−\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\mathrm{V}_{\mathrm{k}} −\mathrm{V}_{\mathrm{k}+\mathrm{2}} \\ $$$$\mathrm{s}_{\mathrm{n}} =\Sigma\left(\mathrm{V}_{\mathrm{k}} −\mathrm{V}_{\mathrm{k}+\mathrm{2}} \right)=\mathrm{V}_{\mathrm{1}} +\mathrm{V}_{\mathrm{2}} −\mathrm{V}_{\mathrm{n}+\mathrm{2}} −\mathrm{V}_{\mathrm{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{2}}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)\mathrm{2}^{\mathrm{n}} }−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{2}^{\mathrm{n}−\mathrm{1}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *