Menu Close

proof-0-1-f-2-t-dt-0-f-0-




Question Number 203807 by aba last updated on 28/Jan/24
proof : ∫_0 ^1 f^2 (t)dt=0 ⇒ f=0
proof:01f2(t)dt=0f=0
Answered by JDamian last updated on 28/Jan/24
  f^2 (t)≥0    ∀t
f2(t)0t
Answered by witcher3 last updated on 29/Jan/24
f is continus   we can f(x)= { ((1 is x∈IQ)),((0 if x∉IQ)) :}  ∫_0 ^1 f^2 (x)dx=∫_(x∈IQ ∩[0,1]) 1 dx=μ[[0,1]∩Q]=0  or f≠0  if f is continus in[0,1]  suppse f≠0 ⇒∃a∈]0,1[ ∣f(a)≠0  ⇒∃ ε>0 such ∀x∈“I=[a−ε,a+ε] f(x)≠0  ⇒∀x∈I   f^2 (x)>0 since f is continus is bounded in compact  interval ⇒y∈I such f^2 (x)≥f^2 (y)>0  0≥∫_0 ^1 f^2 (x)dx≥∫_I  f^2 (x)dx≥∫_I f^2 (y)=f^2 (y).(2ε)  ⇒f^2 (y).2ε=0⇒f(y)=0 absurd  ⇒f=0
fiscontinuswecanf(x)={1isxIQ0ifxIQ01f2(x)dx=xIQ[0,1]1dx=μ[[0,1]Q]=0orf0iffiscontinusin[0,1]suppsef0a]0,1[f(a)0ϵ>0suchxI=[aϵ,a+ϵ]f(x)0xIf2(x)>0sincefiscontinusisboundedincompactintervalyIsuchf2(x)f2(y)>0001f2(x)dxIf2(x)dxIf2(y)=f2(y).(2ϵ)f2(y).2ϵ=0f(y)=0absurdf=0

Leave a Reply

Your email address will not be published. Required fields are marked *