Question Number 203858 by Mastermind last updated on 30/Jan/24
$$\mathrm{Classsify}\:\mathrm{the}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{y}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance}! \\ $$
Commented by TonyCWX08 last updated on 28/Feb/24
$${f}_{{x}} \left({x},{y}\right)=\mathrm{0} \\ $$$${f}_{{x}} \left({x},{y}\right)=\mathrm{2}{xy}−\mathrm{2}{x} \\ $$$$\mathrm{2}{xy}−\mathrm{2}{x}=\mathrm{0}\:\:\Rightarrow\mathrm{1} \\ $$$$ \\ $$$${f}_{{y}} \left({x},{y}\right)\:=\:\mathrm{0} \\ $$$${f}_{{y}} \left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}=\mathrm{0}\:\Rightarrow\mathrm{2} \\ $$$$ \\ $$$${Solving}\:{Simultaneous}\:{Equations} \\ $$$${From}\:\mathrm{1},\:\mathrm{2}{xy}=\mathrm{2}{x}\:\Rightarrow{y}=\mathrm{1} \\ $$$${Substitute}\:{y}=\mathrm{1}\:{into}\:\mathrm{2} \\ $$$${x}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}=\mathrm{1}\:{or}\:−\mathrm{1} \\ $$$$ \\ $$$${Critical}\:{Points}\:=\:\left(\mathrm{1},\mathrm{1}\right)\:{or}\:\left(−\mathrm{1},\mathrm{1}\right) \\ $$