Question Number 203867 by Mathspace last updated on 30/Jan/24
$${find}\:\int\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{3}} }}{dx} \\ $$
Answered by MathematicalUser2357 last updated on 06/Feb/24
$$\frac{\mathrm{8}{x}\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} +\mathrm{1}}}{F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}};−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{4}}{\mathrm{3}};{x}^{\mathrm{3}} ,−{x}^{\mathrm{3}} \right)}{\mathrm{8}{F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}};−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{4}}{\mathrm{3}};{x}^{\mathrm{3}} ,−{x}^{\mathrm{3}} \right)−\mathrm{3}{x}^{\mathrm{3}} \left(\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}};\frac{\mathrm{5}}{\mathrm{3}};{x}^{\mathrm{6}} \right)+{F}_{\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}};−\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{3}};{x}^{\mathrm{3}} ,−{x}^{\mathrm{3}} \right)\right)}+{C} \\ $$
Commented by MathedUp last updated on 08/Feb/24
$${what}\:{the}\:{fuck}\:{LoL} \\ $$