Question Number 203846 by York12 last updated on 30/Jan/24
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\frac{{i}^{\mathrm{2}} −\mathrm{1}}{{i}^{\mathrm{2}} }\right) \\ $$
Answered by MM42 last updated on 30/Jan/24
$${p}_{{n}} =\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\:\frac{{i}^{\mathrm{2}} −\mathrm{1}}{{i}^{\mathrm{2}} }=\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{\left({i}−\mathrm{1}\right)\left({i}+\mathrm{1}\right)}{{i}^{\mathrm{2}} } \\ $$$$\Rightarrow{p}_{{n}} =\frac{\left(\mathrm{1}×\mathrm{3}\right)\left(\mathrm{2}×\mathrm{4}\right)\left(\mathrm{3}×\mathrm{5}\right)…\left({n}−\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{4}^{\mathrm{2}} ×…×{n}^{\mathrm{2}} } \\ $$$$=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\Rightarrow{lim}_{{n}\rightarrow\infty} {p}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\checkmark \\ $$$$ \\ $$
Commented by York12 last updated on 30/Jan/24
$$\mathrm{thanks} \\ $$