Menu Close

find-0-x-3-1-x-4-x-2-5-dx-




Question Number 203884 by Mathspace last updated on 31/Jan/24
find ∫_0 ^∞   (x^3 /((1+x)^4 (x+2)^5 ))dx
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }{dx} \\ $$
Answered by Frix last updated on 01/Feb/24
Use Ostrogradski′s Method to get  ∫(x^3 /((x+1)^4 (x+2)^5 ))dx=  =((288x^6 +2736x^5 +10608x^4 +21432x^3 +23745x^2 +13666x+3194)/(3(x+1)^3 (x+2)^4 ))+96∫(dx/((x+1)(x+2)))  ⇒ answer is  96ln 2 −((1597)/(24))
$$\mathrm{Use}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\:\mathrm{to}\:\mathrm{get} \\ $$$$\int\frac{{x}^{\mathrm{3}} }{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }{dx}= \\ $$$$=\frac{\mathrm{288}{x}^{\mathrm{6}} +\mathrm{2736}{x}^{\mathrm{5}} +\mathrm{10608}{x}^{\mathrm{4}} +\mathrm{21432}{x}^{\mathrm{3}} +\mathrm{23745}{x}^{\mathrm{2}} +\mathrm{13666}{x}+\mathrm{3194}}{\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{4}} }+\mathrm{96}\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is} \\ $$$$\mathrm{96ln}\:\mathrm{2}\:−\frac{\mathrm{1597}}{\mathrm{24}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *