Menu Close

if-y-1-x-2-x-3-x-n-x-y-




Question Number 203910 by Davidtim last updated on 01/Feb/24
if   y=(1−x)(2−x)(3−x)∙∙∙(n−x)  y^′ =?
ify=(1x)(2x)(3x)(nx)y=?
Answered by mr W last updated on 01/Feb/24
y=Π_(k=1) ^n (k−x)  ln y=Σ_(k=1) ^n ln (k−x)  ((y′)/y)=−Σ_(k=1) ^n (1/(k−x))  y′=−Π_(k=1) ^n (k−x)Σ_(k=1) ^n (1/(k−x))
y=nk=1(kx)lny=nk=1ln(kx)yy=nk=11kxy=nk=1(kx)nk=11kx
Answered by witcher3 last updated on 02/Feb/24
f(x)=Π_(i=1) ^n p_i   f′(x)=Σ_(i=1) ^n p_i ′.Π_(l=1#i) ^n p_l ;∀n≥2  proof n=2  f(x)=p_1 .p_2 ⇒f′(x)=p_1 ′.p_2 +p_2 ′.p_1 =Σ_(i=1) ^n (p_i )Π_(l=1≠i) ^2 p_l   suppose ∀n∈N  f′(x)=Σp_i ′Πp_(l  ) true  shows for f(x)=p_1 ....p_(n+1)   f′(x)=Σ_(l=1) ^(n +1) p_l ′Π_(i=1#l) ^(n+1) p_i   f(x)=(p_(n+1) ).(p_1 ....p_n )⇒f′(x)=p_(n+1) ′.(p_1 ...p_n )  +p_(n+1) .Σ_(k=l) ^n p_k ′.Π_(l=1#k) ^n p_l   =Σ_(k=n+1) ^(n+1) p_k ′.Π_(l=1#k) ^(n+1) p_k +Σ_(k=1) ^n p′_k Π_(l=1#k) ^(n+1) p_l   =Σ_(k=1) ^(n+1) p′_k Π_(l=1≠k) ^(n+1) p_l   prooved  in our exempl p_i =(i−x)⇒p′_i =−1  y′=Σ_(k=1) ^n (−1)Π_(l=1≠k) ^n (l−x)=−Σ_(k=1) ^n (1/(k−x))Π_(l=1) ^n (l−x)  =−yΣ_(k=1) ^n (1/(k−x))
f(x)=ni=1piYou can't use 'macro parameter character #' in math modeproofn=2f(x)=p1.p2f(x)=p1.p2+p2.p1=ni=1(pi)2l=1iplsupposenNf(x)=ΣpiΠpltrueshowsforf(x)=p1.pn+1You can't use 'macro parameter character #' in math modef(x)=(pn+1).(p1.pn)f(x)=pn+1.(p1pn)You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode=n+1k=1pkn+1l=1kplproovedinourexemplpi=(ix)pi=1y=nk=1(1)nl=1k(lx)=nk=11kxnl=1(lx)=ynk=11kx
Commented by York12 last updated on 02/Feb/24
GJ
GJ

Leave a Reply

Your email address will not be published. Required fields are marked *