Question Number 203905 by sniper237 last updated on 01/Feb/24
$${let}\:{ABC}\:{a}\:{given}\:{triangle}.\:{Can}\:{we}\:{find} \\ $$$${three}\:{positions}\:{I},{J},{K}\:{on}\:{the}\:{side}\:{AB},{AC},{BC} \\ $$$${Such}\:{that}\:{IJK}\:{is}\:{equilateral}? \\ $$
Commented by mr W last updated on 01/Feb/24
$${yes},\:{we}\:{can}\:{find}\:{infinite}\:{many}\:{such} \\ $$$${points}.\:{the}\:{smallest}\:{equilateral} \\ $$$${triangle}\:{IJK}\:{has}\:{the}\:{side}\:{length} \\ $$$${s}=\frac{\mathrm{2}\sqrt{\mathrm{2}}\Delta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\Delta}}\:{with} \\ $$$$\Delta={area}\:{of}\:{ABC}. \\ $$
Commented by mr W last updated on 01/Feb/24
$${following}\:{image}\:{shows}\:{how}\:{you} \\ $$$${can}\:{find}\:{such}\:{an}\:{equilateral}\:{triangle}: \\ $$
Commented by mr W last updated on 01/Feb/24
Commented by Rasheed.Sindhi last updated on 02/Feb/24
$$\boldsymbol{\mathrm{Sir}},\:{how}\:{can}\:{you}\:{say}\:{there}\:{are} \\ $$$$\boldsymbol{{infinite}}\:{such}\:{points}?\:{The}\:{above} \\ $$$${process}\:{can}\:{be}\:{applied}\:{exactly} \\ $$$${three}\:{ways},\:{I}\:{think}. \\ $$
Commented by mr W last updated on 03/Feb/24
$${the}\:{process}\:{above}\:{shows}\:{only}\:{one}\:{way} \\ $$$${how}\:{to}\:{get}\:{three}\:{of}\:{such}\:{inscribed}\: \\ $$$${equilateral}\:{triangles}.\:{but}\:{there}\:{are} \\ $$$${many}\:{many}\:{other}\:{such}\:{equilateral} \\ $$$${triangles}. \\ $$$${say}\:{the}\:{interior}\:{angles}\:{of}\:{the}\:{given} \\ $$$${triangle}\:{ABC}\:{are}\:\alpha,\:\beta,\:\gamma.\:{following}\: \\ $$$${image}\:{shows}\:{that}\:{a}\:{given}\:{equilateral} \\ $$$${triangle}\:{may}\:{have}\:{infinitely}\:{many} \\ $$$${circumtriangles}\:{whose}\:{interior} \\ $$$${angles}\:{are}\:\alpha,\:\beta,\:\gamma.\:{all}\:{these}\:{circum}− \\ $$$${triangles}\:{are}\:{similar}\:{to}\:{the}\:{original} \\ $$$${triangle}\:{ABC}.\:{that}\:{means}\:{reversely}\: \\ $$$${that}\:{the}\:{triangle}\:{ABC}\:{may}\:{have} \\ $$$${infinitely}\:{many}\:{inscribed}\:{equilateral} \\ $$$${triangles}. \\ $$
Commented by mr W last updated on 03/Feb/24
Commented by mr W last updated on 02/Feb/24
$${see}\:{Q}\mathrm{82131}\:{for}\:{more}\:{about}\:{this}\:{topic}. \\ $$
Commented by Rasheed.Sindhi last updated on 03/Feb/24
$$\boldsymbol{\mathcal{T}{hanks}}\:\boldsymbol{{a}}\:\boldsymbol{{lot}}\:\boldsymbol{{sir}}!\:\boldsymbol{{I}}\:\boldsymbol{{understood}} \\ $$$$\boldsymbol{{clearly}}. \\ $$