Menu Close

Advanced-calculus-Q-If-0-1-0-1-xln-x-ln-2-y-1-xy-dxdy-n-1-1-n-3-n-1-2-Find-




Question Number 203964 by mnjuly1970 last updated on 03/Feb/24
             Advanced  calculus ...    Q:   If ,  ∫_0 ^1 ∫_0 ^( 1) (( xln(x)ln^2 (y ))/(1−xy)) dxdy = λ Σ_(n=1) ^∞ (( 1)/(n^( 3) ( n+1 )^2 ))                                       ⇒  Find ,     λ =?
AdvancedcalculusQ:If,0101xln(x)ln2(y)1xydxdy=λn=11n3(n+1)2Find,λ=?
Answered by witcher3 last updated on 03/Feb/24
nice Probleme  ∀x,y∈[0,1[⇒xy<1  (1/(1−xy))=Σ_(k=0) ^n x^k y^k   ∫_0 ^1 ∫_0 ^1 ((xln(x)ln^2 (y))/(1−xy))dxdy=∫_0 ^1 ∫_0 ^1 Σ_(k≥0) x^(k+1) y^k ln(x)ln^2 (y)dy  =Σ_(k≥0) ∫_0 ^1 x^(k+1) ln(x)dx∫_0 ^1 y^k ln^2 (y)dy  Σ_(k≥0) (−(1/((k+2)^2 ))).((2/((k+1)^3 )));k+1=n;−2Σ_(n≥1) (1/(n^3 (n+1)^2 ))  λ=−2
niceProblemex,y[0,1[xy<111xy=nk=0xkyk0101xln(x)ln2(y)1xydxdy=0101k0xk+1ykln(x)ln2(y)dy=k001xk+1ln(x)dx01ykln2(y)dyk0(1(k+2)2).(2(k+1)3);k+1=n;2n11n3(n+1)2λ=2
Commented by mnjuly1970 last updated on 03/Feb/24
thanks  alot sir wicher
thanksalotsirwicher
Commented by witcher3 last updated on 04/Feb/24
withe Pleasur
withePleasur
Answered by MathematicalUser2357 last updated on 06/Feb/24
λ=−2
λ=2

Leave a Reply

Your email address will not be published. Required fields are marked *