Menu Close

a-b-x-y-R-a-b-23-ax-by-79-ax-2-by-2-217-ax-3-by-3-661-Find-ax-4-by-4-




Question Number 204129 by hardmath last updated on 06/Feb/24
a , b , x , y ∈ R  a + b = 23  ax + by = 79  ax^2  + by^2  = 217  ax^3  + by^3  = 661  Find:   ax^4  + by^4  = ?
a,b,x,yRa+b=23ax+by=79ax2+by2=217ax3+by3=661Find:ax4+by4=?
Answered by AST last updated on 06/Feb/24
x(ax+by)=79x⇒ax^2 +bxy=79x  axy+by^2 =79y⇒ax^2 +by^2 +xy(a+b)=79(x+y)  ⇒217=79(x+y)−23xy...(i)  ax^3 +bxy^2 =217x; ax^2 y+by^3 =217y  661+xy(by+ax)=217(x+y)  ⇒661=217(x+y)−79xy...(ii)  ax^4 +by^4 =x(ax^3 +by^3 )+y(ax^3 +by^3 )−xy(by^2 +ax^2 )  =661x+661y−217xy  23(ii)−79(i)⇒−1250(x+y)=−1940⇒x+y=((194)/(125))  79(ii)−217(i)⇒5130=−1250xy⇒xy=−((513)/(125))  ⇒ax^4 +by^4 =661×((194)/(125))+((217×513)/(125))=((47911)/(25))
x(ax+by)=79xax2+bxy=79xaxy+by2=79yax2+by2+xy(a+b)=79(x+y)217=79(x+y)23xy(i)ax3+bxy2=217x;ax2y+by3=217y661+xy(by+ax)=217(x+y)661=217(x+y)79xy(ii)ax4+by4=x(ax3+by3)+y(ax3+by3)xy(by2+ax2)=661x+661y217xy23(ii)79(i)1250(x+y)=1940x+y=19412579(ii)217(i)5130=1250xyxy=513125ax4+by4=661×194125+217×513125=4791125
Answered by mr W last updated on 06/Feb/24
(ax+by)(x+y)=ax^2 +by^2 +(a+b)xy  ⇒79(x+y)=217+23xy   ...(i)  (ax^2 +by^2 )(x+y)=ax^3 +by^3 +(ax+by)xy  ⇒217(x+y)=661+79xy   ...(ii)  23×(ii)−79×(i):  (23×217−79×79)(x+y)=23×661−79×217  ⇒x+y=((194)/(125))  ⇒xy=(1/(23))×(79×((194)/(125))−217)=−((513)/(125))  (ax^3 +by^3 )(x+y)=ax^4 +by^4 +(ax^2 +by^2 )xy  ⇒ax^4 +by^4 =661×((194)/(125))+217×((513)/(125))=((47911)/(25))
(ax+by)(x+y)=ax2+by2+(a+b)xy79(x+y)=217+23xy(i)(ax2+by2)(x+y)=ax3+by3+(ax+by)xy217(x+y)=661+79xy(ii)23×(ii)79×(i):(23×21779×79)(x+y)=23×66179×217x+y=194125xy=123×(79×194125217)=513125(ax3+by3)(x+y)=ax4+by4+(ax2+by2)xyax4+by4=661×194125+217×513125=4791125
Commented by Tawa11 last updated on 06/Feb/24
Nice sir
Nicesir
Commented by mr W last updated on 06/Feb/24
generally  with s_n =ax^n +by^n   s_n =(x+y)s_(n−1) −xys_(n−2)   s_4 =((194)/(125))×661+((513)/(125))×217=((47911)/(25))  s_5 =((194)/(125))×((47911)/(25))+((513)/(125))×661=((17772059)/(3125))  ......
generallywithsn=axn+bynsn=(x+y)sn1xysn2s4=194125×661+513125×217=4791125s5=194125×4791125+513125×661=177720593125
Commented by hardmath last updated on 06/Feb/24
perfect solution dear prafessor thank you
perfectsolutiondearprafessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *