Menu Close

find-the-maximum-of-1-cosx-sinx-without-derivative-




Question Number 204105 by CrispyXYZ last updated on 06/Feb/24
find the maximum of (1 + cosx) sinx  without derivative.
findthemaximumof(1+cosx)sinxwithoutderivative.
Answered by AST last updated on 06/Feb/24
(1+cosx)(((√3)(sinx))/( (√3)))≤(((1+cos(x)+(√3)sinx)/2))^2 ×(1/( (√3)))  ≤(((1+(√(1^2 +((√3))^2 )))/2))^2 ×(1/( (√3)))=((3(√3))/4)  Equality holds when cosx=(√3)sinx−1  ⇒((√3)sinx−1)^2 +sin^2 x=1⇒4sin^2 x=2(√3)sinx  ⇒sin(x)=((√3)/2)⇒x=(π/3)+2nπ
(1+cosx)3(sinx)3(1+cos(x)+3sinx2)2×13(1+12+(3)22)2×13=334Equalityholdswhencosx=3sinx1(3sinx1)2+sin2x=14sin2x=23sinxsin(x)=32x=π3+2nπ
Commented by AST last updated on 06/Feb/24
[How c=(√3) was gotten above]  (((1+cosx)csinx)/c)≤(((1+cosx+csinx)/2))^2 ×(1/c)≤(1/c)(((1+(√(c^2 +1)))^2 )/4)  Equality when cosx=csinx−1  ⇒(c^2 +1)sin^2 x−2csinx=0⇒sinx=((2c)/(c^2 +1))  ⇒cosx=((c^2 −1)/(c^2 +1))⇒((4c^4 )/((c^2 +1)^2 ))=((2+c^2 +2(√(c^2 +1)))/4)  ⇒c=(√3)
[Howc=3wasgottenabove](1+cosx)csinxc(1+cosx+csinx2)2×1c1c(1+c2+1)24Equalitywhencosx=csinx1(c2+1)sin2x2csinx=0sinx=2cc2+1cosx=c21c2+14c4(c2+1)2=2+c2+2c2+14c=3
Commented by CrispyXYZ last updated on 07/Feb/24
Nice sir
Nicesir
Answered by mr W last updated on 06/Feb/24
let t=tan (x/2)  for maximum of y we only need to  treat sin x>0 or t>0.    y=(1+cos x)sin x  =(1+((1−t^2 )/(1+t^2 )))×((2t)/(1+t^2 ))  =((4t)/((1+t^2 )^2 ))  =(4/(((1/( (√t)))+t(√t))^2 ))  =(4/(((1/( 3(√t)))+(1/( 3(√t)))+(1/( 3(√t)))+t(√t))^2 ))  ≤(4/((4×(((1/(3(√t)))×(1/(3(√t)))×(1/(3(√t)))×t(√t)))^(1/4) )^2 ))=((3(√3))/4)  i.e. maximum is ((3(√3))/4) which occurs  when (1/(3(√t)))=t(√t), i.e. t=(1/( (√3)))=tan (x/2)  or (x/2)=kπ+(π/6) or x=2kπ+(π/3)
lett=tanx2formaximumofyweonlyneedtotreatsinx>0ort>0.y=(1+cosx)sinx=(1+1t21+t2)×2t1+t2=4t(1+t2)2=4(1t+tt)2=4(13t+13t+13t+tt)24(4×13t×13t×13t×tt4)2=334i.e.maximumis334whichoccurswhen13t=tt,i.e.t=13=tanx2orx2=kπ+π6orx=2kπ+π3
Commented by CrispyXYZ last updated on 07/Feb/24
Thanks a lot sir
Thanksalotsir
Answered by CrispyXYZ last updated on 07/Feb/24
Solution with Jensen′s Inequality:  S=(1+cos x)sin x  =sin x+(1/2)sin 2x  T=2π  I. x∈[0, (π/2)]  S=sin x+(1/2)sin(π−2x)     =(3/2)((2/3)sin x+(1/3)sin(π−2x))     ≤(3/2)sin((2/3)x+(π/3)−(2/3)x)=((3(√3))/4)          (x=(π/3))  II. x∈[−π, 0]  1+cos x≥0, sin x≤0  ⇒S≤0  III. x∈[(π/2), π]  S=sin(π−x)−(1/2)sin(2π−2x)     ≤sin(π−x)+(1/2)sin(2π−2x)     <((3(√3))/4)                                         (according to I)  Conclusion: S_(max) =((3(√3))/4)  ⇔ x=(π/3)+2kπ
SolutionwithJensensInequality:S=(1+cosx)sinx=sinx+12sin2xT=2πI.x[0,π2]S=sinx+12sin(π2x)=32(23sinx+13sin(π2x))32sin(23x+π323x)=334(x=π3)II.x[π,0]1+cosx0,sinx0S0III.x[π2,π]S=sin(πx)12sin(2π2x)sin(πx)+12sin(2π2x)<334(accordingtoI)Conclusion:Smax=334x=π3+2kπ

Leave a Reply

Your email address will not be published. Required fields are marked *