Menu Close

If-p-q-r-gt-0-pqr-1-min-p-3-q-r-q-3-p-r-r-3-p-q-give-a-reason-




Question Number 204187 by mnjuly1970 last updated on 08/Feb/24
        If   p , q , r >0 ,  pqr= 1          ⇒  min((( p^3 )/(q+r)) + (q^( 3) /(p+r)) +(r^3 /(p+q)) )=?     ∗ give a reason ∗
$$ \\ $$$$\:\:\:\:\:\:{If}\:\:\:{p}\:,\:{q}\:,\:{r}\:>\mathrm{0}\:,\:\:{pqr}=\:\mathrm{1} \\ $$$$\:\:\:\:\: \\ $$$$\:\Rightarrow\:\:{min}\left(\frac{\:{p}^{\mathrm{3}} }{{q}+{r}}\:+\:\frac{{q}^{\:\mathrm{3}} }{{p}+{r}}\:+\frac{{r}^{\mathrm{3}} }{{p}+{q}}\:\right)=? \\ $$$$\:\:\:\ast\:{give}\:{a}\:{reason}\:\ast \\ $$
Answered by AST last updated on 08/Feb/24
Σ(p^3 /(q+r))=Σ(p^4 /(pq+pr))≥(((p^2 +q^2 +r^2 )^2 )/(2(pq+qr+rp)))≥(((p^2 +q^2 +r^2 )^2 )/(2(p^2 +q^2 +r^2 )))  =((p^2 +q^2 +r^2 )/2)≥((3(((pqr)^2 ))^(1/3) )/2)=(3/2)[Equality when p=q=r=1]
$$\Sigma\frac{{p}^{\mathrm{3}} }{{q}+{r}}=\Sigma\frac{{p}^{\mathrm{4}} }{{pq}+{pr}}\geqslant\frac{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left({pq}+{qr}+{rp}\right)}\geqslant\frac{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)} \\ $$$$=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}}\geqslant\frac{\mathrm{3}\sqrt[{\mathrm{3}}]{\left({pqr}\right)^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}\left[{Equality}\:{when}\:{p}={q}={r}=\mathrm{1}\right] \\ $$
Commented by mnjuly1970 last updated on 08/Feb/24
 T
$$\:{T} \\ $$
Answered by witcher3 last updated on 08/Feb/24
p>q>r  (1/(q+r))>(1/(p+r))>(1/(p+q))  reardement inequality  LHs≥(1/2)(((q^3 +r^3 )/(q+r))+((p^3 +r^3 )/(p+r))+((p^3 +q^3 )/(p+q)))  LHS≥(1/2)(2q^2 +2r^2 +2p^2 −qr−pr−pq)  (q^2 +r^2 +p^2 )≥_(CS) pr+rq+qp  LHS≥((p^2 +q^2 +r^2 )/2)≥(3/2)(p^2 q^2 r^2 )^(1/3) =(3/2)
$$\mathrm{p}>\mathrm{q}>\mathrm{r} \\ $$$$\frac{\mathrm{1}}{\mathrm{q}+\mathrm{r}}>\frac{\mathrm{1}}{\mathrm{p}+\mathrm{r}}>\frac{\mathrm{1}}{\mathrm{p}+\mathrm{q}} \\ $$$$\mathrm{reardement}\:\mathrm{inequality} \\ $$$$\mathrm{LHs}\geqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{q}^{\mathrm{3}} +\mathrm{r}^{\mathrm{3}} }{\mathrm{q}+\mathrm{r}}+\frac{\mathrm{p}^{\mathrm{3}} +\mathrm{r}^{\mathrm{3}} }{\mathrm{p}+\mathrm{r}}+\frac{\mathrm{p}^{\mathrm{3}} +\mathrm{q}^{\mathrm{3}} }{\mathrm{p}+\mathrm{q}}\right) \\ $$$$\mathrm{LHS}\geqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2q}^{\mathrm{2}} +\mathrm{2r}^{\mathrm{2}} +\mathrm{2p}^{\mathrm{2}} −\mathrm{qr}−\mathrm{pr}−\mathrm{pq}\right) \\ $$$$\left(\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{p}^{\mathrm{2}} \right)\underset{\mathrm{CS}} {\geqslant}\mathrm{pr}+\mathrm{rq}+\mathrm{qp} \\ $$$$\mathrm{LHS}\geqslant\frac{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\geqslant\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{p}^{\mathrm{2}} \mathrm{q}^{\mathrm{2}} \mathrm{r}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 08/Feb/24
thanks alot sir  ⋛
$${thanks}\:{alot}\:{sir}\:\:\lesseqgtr \\ $$
Commented by witcher3 last updated on 08/Feb/24
withe Pleasur
$$\mathrm{withe}\:\mathrm{Pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *