Question Number 204179 by mr W last updated on 08/Feb/24
Answered by AST last updated on 08/Feb/24
$${f}\left({x}\right)={f}\left({y}\right)\Rightarrow{f}\left({f}\left({x}\right)\right)={f}\left({f}\left({y}\right)\right)\Rightarrow{x}^{\mathrm{2}} −{x}={y}^{\mathrm{2}} −{y} \\ $$$$\Rightarrow\left({x}−{y}\right)\left({x}+{y}\right)={x}−{y}\Rightarrow{x}=\mathrm{1}−{y}\:{or}\:{x}={y} \\ $$$$\Rightarrow{f}\left({x}\right)={f}\left(\mathrm{1}−{x}\right)\Rightarrow{f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right) \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} −{f}\left({x}\right)+\mathrm{1}={f}\left({f}\left({f}\left({x}\right)\right)\right) \\ $$$$={f}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\left[{f}\left(\mathrm{1}\right)\right]^{\mathrm{2}} −{f}\left(\mathrm{1}\right)+\mathrm{1}\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1}={f}\left(\mathrm{0}\right) \\ $$
Commented by mr W last updated on 08/Feb/24
Answered by witcher3 last updated on 08/Feb/24
$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{0}\right)\right)=\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{1}\right)\right)=\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{a};\mathrm{f}\left(\mathrm{1}\right)=\mathrm{b} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{a}\right)=\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{a}\right)\right)=\mathrm{f}\left(\mathrm{1}\right) \\ $$$$\mathrm{a}^{\mathrm{2}} −\mathrm{a}+\mathrm{1}=\mathrm{b} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{b}\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{1}\right)\right)=\mathrm{f}\left(\mathrm{b}\right)=\mathrm{1} \\ $$$$\mathrm{b}^{\mathrm{2}} −\mathrm{b}+\mathrm{1}=\mathrm{b}\Rightarrow\mathrm{b}=\mathrm{1} \\ $$$$\mathrm{a}\left(\mathrm{a}−\mathrm{1}\right)=\mathrm{0}\Rightarrow\mathrm{a}\in\left\{\mathrm{0},\mathrm{1}\right\} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{0}\right)\right)=\mathrm{f}\left(\mathrm{0}\right)\Rightarrow\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{impossible}\Rightarrow\mathrm{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$ \\ $$
Commented by mr W last updated on 08/Feb/24