Menu Close

Show-that-0-pi-4-tan-x-1-tan-x-dx-2-1-2-1-pi-




Question Number 204275 by Frix last updated on 11/Feb/24
Show that  ∫_0 ^(π/4) (√(tan x)) (√(1−tan x)) dx=(((√((√2)−1))/( (√2)))−1)π
Showthatπ40tanx1tanxdx=(2121)π
Answered by witcher3 last updated on 11/Feb/24
nice problem  tan(x)=y  ∫_0 ^1 ((√(y(1−y)))/(1+y^2 ))dy=I;(1/y)=z⇒I=∫_1 ^∞ ((√(z−1))/(z(z^2 +1)))dz  (√(z−1))=x⇒I=∫_0 ^∞ ((2x^2 )/(((x^2 +1)^2 +1)(x^2 +1)))dx  =∫_0 ^∞ ((2x^2 )/((x^2 +1+i)(x^2 +1−i)))=∫_(−∞) ^∞ ((x^2 dx)/((x^2 +1−i)(x^2 +1+i)(x^2 +1)))=I  Residue Theorem overH {z∈C∣im(z)≥0}  x^2 +1−i=0⇒x^2 =(√2)e^(3((iπ)/4))   x1=(√(√2))e^((i3π)/8) ∈H  x^2 =−1−i⇒x^2 =(√2)e^((5iπ)/4) ⇒x_2 =(√(√2))e^((5iπ)/8)   x^2 +1=0⇒x_3 =i  I=2iπ {Res(f,z_1 )+Res(f,z_2 ))Resf(x_3 )}  =2iπ{(z_1 ^2 /((2z_(1 ) )(z_1 ^2 +1+i)(z_1 ^2 +1)))+(z_2 ^2 /((2z_2 )(z_2 ^2 +1−i)(z_2 ^2 +1)))+(z_3 ^2 /(2z_3 (z_3 ^2 +1+i)(z_3 ^2 +1−i))))  =2iπ{(((√(√2))e^((3iπ)/8) )/(4i^2 ))+(((√(√2))e^((5iπ)/8) )/(−4))+(i/(2(i)(−i)))}  =(i/2)π(√(√2))(−e^((3iπ)/8) −e^((5iπ)/8) )−π  =(π/2)(√(√2))(2sin(3(π/8)))−π  =π(√((√2).sin^2 (((3π)/8))))−π  =π(√((1/2)(1−cos(3(π/4)))(√2)))−π  =π(√((1/( (√2)))+(1/2)))−π  =π(((√((√2)+1))/( (√2)))−1)
niceproblemtan(x)=y01y(1y)1+y2dy=I;1y=zI=1z1z(z2+1)dzz1=xI=02x2((x2+1)2+1)(x2+1)dx=02x2(x2+1+i)(x2+1i)=x2dx(x2+1i)(x2+1+i)(x2+1)=IResidueTheoremoverH{zCim(z)0}x2+1i=0x2=2e3iπ4x1=2ei3π8Hx2=1ix2=2e5iπ4x2=2e5iπ8x2+1=0x3=iI=2iπ{Res(f,z1)+Res(f,z2))Resf(x3)}=2iπ{z12(2z1)(z12+1+i)(z12+1)+z22(2z2)(z22+1i)(z22+1)+z322z3(z32+1+i)(z32+1i))=2iπ{2e3iπ84i2+2e5iπ84+i2(i)(i)}=i2π2(e3iπ8e5iπ8)π=π22(2sin(3π8))π=π2.sin2(3π8)π=π12(1cos(3π4))2π=π12+12π=π(2+121)
Commented by Frix last updated on 11/Feb/24
Thank you!
Thankyou!
Commented by witcher3 last updated on 11/Feb/24
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *