Show-that-0-pi-4-tan-x-1-tan-x-dx-2-1-2-1-pi- Tinku Tara February 11, 2024 Integration 0 Comments FacebookTweetPin Question Number 204275 by Frix last updated on 11/Feb/24 Showthat∫π40tanx1−tanxdx=(2−12−1)π Answered by witcher3 last updated on 11/Feb/24 niceproblemtan(x)=y∫01y(1−y)1+y2dy=I;1y=z⇒I=∫1∞z−1z(z2+1)dzz−1=x⇒I=∫0∞2x2((x2+1)2+1)(x2+1)dx=∫0∞2x2(x2+1+i)(x2+1−i)=∫−∞∞x2dx(x2+1−i)(x2+1+i)(x2+1)=IResidueTheoremoverH{z∈C∣im(z)⩾0}x2+1−i=0⇒x2=2e3iπ4x1=2ei3π8∈Hx2=−1−i⇒x2=2e5iπ4⇒x2=2e5iπ8x2+1=0⇒x3=iI=2iπ{Res(f,z1)+Res(f,z2))Resf(x3)}=2iπ{z12(2z1)(z12+1+i)(z12+1)+z22(2z2)(z22+1−i)(z22+1)+z322z3(z32+1+i)(z32+1−i))=2iπ{2e3iπ84i2+2e5iπ8−4+i2(i)(−i)}=i2π2(−e3iπ8−e5iπ8)−π=π22(2sin(3π8))−π=π2.sin2(3π8)−π=π12(1−cos(3π4))2−π=π12+12−π=π(2+12−1) Commented by Frix last updated on 11/Feb/24 Thankyou! Commented by witcher3 last updated on 11/Feb/24 withepleasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-204270Next Next post: Question-204279 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.