Menu Close

If-f-0-b-continuous-R-g-R-b-periodic-continuous-R-lim-n-0-b-f-x-g-nx-dx-1-b-0-b-f-x-dx-0-b-g-x-dx-




Question Number 204372 by mnjuly1970 last updated on 14/Feb/24
    If ,    f : [ 0 , b] →^(continuous)  R           ,    g : R →_(b−periodic) ^(continuous)  R        ⇒  lim_(n→∞)  ∫_0 ^( b) f(x)g(nx)dx=^? (1/b) ∫_0 ^( b) f(x)dx .∫_0 ^( b) g(x)dx
If,f:[0,b]continuousR,g:RcontinuousbperiodicRlimn0bf(x)g(nx)dx=?1b0bf(x)dx.0bg(x)dx
Answered by witcher3 last updated on 15/Feb/24
Ω=lim_(n→∞) ∫_0 ^b f(x)g(nx)dx=(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(x)dx  nx=y⇒Ω=lim_(n→∞) (1/n)∫_0 ^(nb) f((y/n))g(y)dy=lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ∫_(kb) ^((k+1)b) f((y/n))g(y)dy  y=kb+z;g(y)=g(z)  by b periodicity of g  =lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ∫_0 ^b f(((kb)/n)+(z/n))g(z)dz  =∫_0 ^b lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) f(((kb)/n)+(z/n))g(z)dz  let f^∼ (x)=f(x+(z/n))  f^∼ (x) cv uniformly to f  lim_(n→∞) f(x+(z/n))=f(x)  Ω=∫_0 ^b lim_(n→∞) (1/n)Σ_(k=0) ^(n−1) f^∼ (((k(b−0))/n)).g(z)dz=(1/b)∫_0 ^b lim_(n→∞) ((b−0)/n)∫f(((kb)/n))g(z)dz  =(1/b).lim_(n→∞) {(b/n)f(((kb)/n))}.∫_0 ^b g(z)dz  Σ_(k=0) ^(n−1) ((b−0)/n)f(k(b/n))=∫_0 ^b f(x)dx  Ω=(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(z)dz,z muet variable  =(1/b)∫_0 ^b f(x)dx.∫_0 ^b g(x)dx  riemann cv by contonuity of f  lim_(n→∞) ∫_0 ^b f^∼ (x)dx=∫_0 ^b f(x)dx  by uniforme cv of f^∼ (x)  lim_(n→∞)  sup∣f(x+(z/n))−f(x)∣=0  “since f is defined [0,b] compact⇒simple cv⇒uniforme cv”
Ω=limn0bf(x)g(nx)dx=1b0bf(x)dx.0bg(x)dxnx=yΩ=limn1n0nbf(yn)g(y)dy=limn1nn1k=1kb(k+1)bf(yn)g(y)dyy=kb+z;g(y)=g(z)bybperiodicityofg=limn1nn1k=10bf(kbn+zn)g(z)dz=0blimn1nn1k=1f(kbn+zn)g(z)dzletf(x)=f(x+zn)f(x)cvuniformlytoflimfn(x+zn)=f(x)Ω=0blimn1nn1k=0f(k(b0)n).g(z)dz=1b0blimnb0nf(kbn)g(z)dz=1b.limn{bnf(kbn)}.0bg(z)dzn1k=0b0nf(kbn)=0bf(x)dxΩ=1b0bf(x)dx.0bg(z)dz,zmuetvariable=1b0bf(x)dx.0bg(x)dxriemanncvbycontonuityofflimn0bf(x)dx=0bf(x)dxbyuniformecvoff(x)limnsupf(x+zn)f(x)∣=0sincefisdefined[0,b]compactsimplecvuniformecv
Commented by mnjuly1970 last updated on 15/Feb/24
thank you so much   sir wicher .excellent proof.
thankyousomuchsirwicher.excellentproof.
Answered by witcher3 last updated on 15/Feb/24
nice probleme didnt expcte such result existe
niceproblemedidntexpctesuchresultexiste

Leave a Reply

Your email address will not be published. Required fields are marked *