Menu Close

if-lim-x-a-6-x-1-ax-1-2-find-the-largest-and-smallest-correct-value-for-a-




Question Number 204360 by esmaeil last updated on 14/Feb/24
if  lim_(x→+∞) [(((a+6)x+1)/(ax+1))]=2→  find the largest and smallest correct  value for a.
iflimx+[(a+6)x+1ax+1]=2findthelargestandsmallestcorrectvaluefora.
Answered by AST last updated on 14/Feb/24
=lim_(x→+∞) [((a+6+(1/x))/(a+(1/x)))]=((a+6)/a)=2⇒a=6
=limx+[a+6+1xa+1x]=a+6a=2a=6
Commented by esmaeil last updated on 14/Feb/24
thank  you.  and smallest value?
thankyou.andsmallestvalue?
Commented by esmaeil last updated on 14/Feb/24
2≤((a+6)/a)<3→1≤(6/a)⟨2→  3<a≤6→ { ((a_l =6)),((a_s =4  (a is correct))) :}
2a+6a<316a23<a6{al=6as=4(aiscorrect)
Commented by esmaeil last updated on 14/Feb/24
[((10)/4)]=2
[104]=2
Commented by AST last updated on 15/Feb/24
I thought [ ] was just a bracket,if [x] is floor of  x, then [((a+6)/a)]=2<((a+6)/a)≤3⇒3≤a<6  ⇒min(a)=3 and upper bound of a=6
Ithought[]wasjustabracket,if[x]isfloorofx,then[a+6a]=2<a+6a33a<6min(a)=3andupperboundofa=6
Answered by mr W last updated on 15/Feb/24
let t=(1/x)  x→+∞ ⇒t→0^+   lim_(x→+∞) [(((a+6)x+1)/(ax+1))]  =lim_(t→0^+ ) [((a+6+t)/(a+t))]=2  ⇒2<((a+6)/a)≤3  ⇒3≤a<6
lett=1xx+t0+limx+[(a+6)x+1ax+1]=limt0+[a+6+ta+t]=22<a+6a33a<6
Commented by AST last updated on 14/Feb/24
It seems 6 doesn′t work.  a=6⇒lim_(x→+∞) [((12x+1)/(6x+1))]=lim_(x→+∞) [((2(6x+1)−1)/(6x+1))]  =lim_(x→+∞) [2−(1/(6x+1))]=1,since 1<2−(1/(6x+1))<2 as  x→+∞.  Even though lim_(x→+∞) 2−(1/(6x+1))=2, it approaches 2  from the negative axis(2^− ),so all values are   less than 2.
Itseems6doesntwork.a=6limx+[12x+16x+1]=limx+[2(6x+1)16x+1]=limx+[216x+1]=1,since1<216x+1<2asx+.Eventhoughlimx+216x+1=2,itapproaches2fromthenegativeaxis(2),soallvaluesarelessthan2.
Commented by mr W last updated on 14/Feb/24
you are right. 3≤a<6.
youareright.3a<6.
Answered by AST last updated on 14/Feb/24
lim_(x→+∞) [((ax+1+6x)/(ax+1))]=lim_(x→+∞) [((6x)/(ax+1))+1]=2  If 6x<ax+1,then ((6x)/(ax+1))<1⇒[((6x)/(ax+1))+1]<2  ⇒6x≥ax+1⇒a≤((6x−1)/x)=6−(1/x)<6   a<6⇒[((6x)/(ax+1))+1]=[((ax+1+(6−a)x−1)/(ax+1))+1]  =[2+(((6−a)x−1)/(ax+1))]  lim_(x→+∞) (((6−a)x−1)/(ax+1))=((6−a)/a)=(6/a)−1  lim_(x→+∞) [((ax+1+6x)/(ax+1))]=lim_(x→+∞) [2+(((6−a)x−1)/(ax+1))]=2  lim_(x→+∞) (((6−a)x−1)/(ax+1))≤1⇒(6/a)−1≤1⇒a≥3  ⇒3≤a<6
limx+[ax+1+6xax+1]=limx+[6xax+1+1]=2If6x<ax+1,then6xax+1<1[6xax+1+1]<26xax+1a6x1x=61x<6a<6[6xax+1+1]=[ax+1+(6a)x1ax+1+1]=[2+(6a)x1ax+1]limx+(6a)x1ax+1=6aa=6a1limx+[ax+1+6xax+1]=limx+[2+(6a)x1ax+1]=2limx+(6a)x1ax+116a11a33a<6

Leave a Reply

Your email address will not be published. Required fields are marked *