Question Number 204349 by Abdullahrussell last updated on 14/Feb/24
Commented by mr W last updated on 14/Feb/24
$${you}\:{can}'{t}\:{prove}\:{something}\:{wrong}! \\ $$
Commented by mr W last updated on 14/Feb/24
$${m}=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{5}}}{\mathrm{2}}<\frac{\sqrt{\mathrm{9}}+\sqrt{\mathrm{9}}}{\mathrm{2}}=\mathrm{3} \\ $$$$\Rightarrow{m}^{\mathrm{5}} <\mathrm{3}^{\mathrm{5}} =\mathrm{243} \\ $$$${m}=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{5}}}{\mathrm{2}}>\frac{\sqrt{\mathrm{4}}+\sqrt{\mathrm{4}}}{\mathrm{2}}=\mathrm{2} \\ $$$${m}^{\mathrm{5}} >\mathrm{2}^{\mathrm{5}} =\mathrm{32} \\ $$$$\Rightarrow\frac{\mathrm{32}}{{m}^{\mathrm{5}} }<\mathrm{1} \\ $$$$\Rightarrow{m}^{\mathrm{5}} +\frac{\mathrm{32}}{{m}^{\mathrm{5}} }<\mathrm{243}+\mathrm{1}=\mathrm{244} \\ $$$${but}\:\mathrm{1048}\sqrt{\mathrm{6}}>\mathrm{1048}\sqrt{\mathrm{4}}=\mathrm{2096} \\ $$$$\Rightarrow{m}^{\mathrm{5}} +\frac{\mathrm{32}}{{m}^{\mathrm{5}} }\:\:{can}\:{never}\:{be}\:=\mathrm{1048}\sqrt{\mathrm{6}}\:! \\ $$
Answered by Rasheed.Sindhi last updated on 14/Feb/24
$${m}+{n}=\sqrt{\mathrm{6}}\:\:\:\:\&\:\:\:{m}−{n}=\sqrt{\mathrm{5}}\: \\ $$$$\Rightarrow{m}=\frac{\sqrt{\mathrm{6}}\:\:+\sqrt{\mathrm{5}}\:}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{2}}{{m}}=\frac{\mathrm{2}}{\frac{\sqrt{\mathrm{6}}\:+\sqrt{\mathrm{5}}\:}{\mathrm{2}}}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{6}}\:+\sqrt{\mathrm{5}}\:}\centerdot\frac{\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{5}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{5}}\:\right)}{\mathrm{1}}=\mathrm{4}\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{5}}\:\right) \\ $$$$\Rightarrow{m}+\frac{\mathrm{2}}{{m}}=\frac{\sqrt{\mathrm{6}}\:\:+\sqrt{\mathrm{5}}\:}{\mathrm{2}}+\mathrm{4}\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{5}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}} \\ $$$$\Rightarrow\left({m}+\frac{\mathrm{2}}{{m}}\right)^{\mathrm{2}} =\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} +\frac{\mathrm{4}}{{m}^{\mathrm{2}} }=\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{4}=\frac{\mathrm{25}\left(\mathrm{6}\right)+\mathrm{9}\left(\mathrm{5}\right)−\mathrm{30}\sqrt{\mathrm{30}}\:−\mathrm{16}}{\mathrm{4}}=\frac{\mathrm{179}−\mathrm{30}\sqrt{\mathrm{30}}}{\mathrm{4}}\: \\ $$$$\left({m}+\frac{\mathrm{2}}{{m}}\right)^{\mathrm{3}} =\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$$${m}^{\mathrm{3}} +\frac{\mathrm{8}}{{m}^{\mathrm{3}} }=\frac{\mathrm{1425}\sqrt{\mathrm{6}}\:−\mathrm{1485}\sqrt{\mathrm{5}}}{\mathrm{8}}−\mathrm{6}\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1425}\sqrt{\mathrm{6}}\:−\mathrm{1485}\sqrt{\mathrm{5}}−\mathrm{24}\left(\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:\right)}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left.\mathrm{1425}\sqrt{\mathrm{6}}\:−\mathrm{1485}\sqrt{\mathrm{5}}−\mathrm{120}\sqrt{\mathrm{6}}\:+\mathrm{72}\sqrt{\mathrm{5}}\:\:\right)}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1305}\sqrt{\mathrm{6}}\:−\mathrm{13}\sqrt{\mathrm{5}}}{\mathrm{8}} \\ $$$$\left({m}^{\mathrm{2}} +\frac{\mathrm{4}}{{m}^{\mathrm{2}} }\right)\left({m}^{\mathrm{3}} +\frac{\mathrm{8}}{{m}^{\mathrm{3}} }\right)=\left(\frac{\mathrm{179}−\mathrm{30}\sqrt{\mathrm{30}}}{\mathrm{4}}\right)\left(\frac{\mathrm{1305}\sqrt{\mathrm{6}}\:−\mathrm{13}\sqrt{\mathrm{5}}}{\mathrm{8}}\right) \\ $$$${m}^{\mathrm{5}} +\frac{\mathrm{32}}{{m}^{\mathrm{3}} }+\mathrm{4}\left({m}+\frac{\mathrm{2}}{{m}}\right)=\frac{\left(\mathrm{179}−\mathrm{30}\sqrt{\mathrm{30}}\right)\left(\mathrm{1305}\sqrt{\mathrm{6}}\:−\mathrm{13}\sqrt{\mathrm{5}}\right)}{\mathrm{32}} \\ $$$${m}^{\mathrm{5}} +\frac{\mathrm{32}}{{m}^{\mathrm{3}} }+\mathrm{4}\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right)=\frac{\left(\mathrm{179}−\mathrm{30}\sqrt{\mathrm{30}}\right)\left(\mathrm{1305}\sqrt{\mathrm{6}}\:−\mathrm{13}\sqrt{\mathrm{5}}\right)}{\mathrm{32}} \\ $$$${m}^{\mathrm{5}} +\frac{\mathrm{32}}{{m}^{\mathrm{3}} }=\frac{\left(\mathrm{179}−\mathrm{30}\sqrt{\mathrm{30}}\right)\left(\mathrm{1305}\sqrt{\mathrm{6}}\:−\mathrm{13}\sqrt{\mathrm{5}}\right)}{\mathrm{32}}−\mathrm{4}\left(\frac{\mathrm{5}\sqrt{\mathrm{6}}\:−\mathrm{3}\sqrt{\mathrm{5}}\:\:}{\mathrm{2}}\right) \\ $$$${Continue} \\ $$