Menu Close

Question-204350




Question Number 204350 by universe last updated on 14/Feb/24
Answered by mr W last updated on 14/Feb/24
P(a)=a^4 +a^2 b+ac+d=1    ...(i)  P(b)=ab^3 +b^3 +bc+d=−1   ...(ii)  (i)−(ii):  a(a^3 −b^3 )+b(a^2 −b^2 )+c(a−b)=2  a(a^2 +b^2 +ab)+b(a+b)+c=(2/(a−b))=whole number  ⇒a−b=±1, ±2  ⇒∣a−b∣_(max) =2 ✓
$${P}\left({a}\right)={a}^{\mathrm{4}} +{a}^{\mathrm{2}} {b}+{ac}+{d}=\mathrm{1}\:\:\:\:…\left({i}\right) \\ $$$${P}\left({b}\right)={ab}^{\mathrm{3}} +{b}^{\mathrm{3}} +{bc}+{d}=−\mathrm{1}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$${a}\left({a}^{\mathrm{3}} −{b}^{\mathrm{3}} \right)+{b}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+{c}\left({a}−{b}\right)=\mathrm{2} \\ $$$${a}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{ab}\right)+{b}\left({a}+{b}\right)+{c}=\frac{\mathrm{2}}{{a}−{b}}={whole}\:{number} \\ $$$$\Rightarrow{a}−{b}=\pm\mathrm{1},\:\pm\mathrm{2} \\ $$$$\Rightarrow\mid{a}−{b}\mid_{{max}} =\mathrm{2}\:\checkmark \\ $$
Commented by universe last updated on 14/Feb/24
 but sir how it is possible p(b)=−1  because a,b,c,d all are positive integer so  ab^3 +b^3 +bc+d ≥0 i think question is wrong??
$$\:{but}\:{sir}\:{how}\:{it}\:{is}\:{possible}\:{p}\left({b}\right)=−\mathrm{1} \\ $$$${because}\:{a},{b},{c},{d}\:{all}\:{are}\:{positive}\:{integer}\:{so} \\ $$$${ab}^{\mathrm{3}} +{b}^{\mathrm{3}} +{bc}+{d}\:\geqslant\mathrm{0}\:{i}\:{think}\:{question}\:{is}\:{wrong}?? \\ $$
Commented by mr W last updated on 14/Feb/24
i think the question means just   integer numbers (Z).  in different countries it may have  different meanings.
$${i}\:{think}\:{the}\:{question}\:{means}\:{just}\: \\ $$$${integer}\:{numbers}\:\left(\mathbb{Z}\right). \\ $$$${in}\:{different}\:{countries}\:{it}\:{may}\:{have} \\ $$$${different}\:{meanings}. \\ $$
Commented by mr W last updated on 14/Feb/24
Commented by universe last updated on 14/Feb/24
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *