Menu Close

Question-204418




Question Number 204418 by peter frank last updated on 17/Feb/24
Commented by mr W last updated on 19/Feb/24
y=2(x−(1/x))^2
y=2(x1x)2
Answered by mr W last updated on 19/Feb/24
x=e^t   (dx/dt)=e^t =x  (dy/dx)=(dy/dt)×(1/(dx/dt))=(dy/dt)×(1/x)  ⇒x(dy/dx)=(dy/dt)  (d^2 y/dx^2 )=(d/dx)((dy/dx))=(d/dt)((dy/dx))×(1/(dx/dt))=(d/dt)((dy/dt)×(1/x))×(1/x)  =((d^2 y/dt^2 )×(1/x)+(dy/dt)×(−(1/x^2 )×(dx/dt)))×(1/x)  =((d^2 y/dt^2 )×(1/x)+(dy/dt)×(−(1/x^2 )×x))×(1/x)  =((d^2 y/dt^2 )−(dy/dt))×(1/x^2 )  ⇒x^2 (d^2 y/dx^2 )=(d^2 y/dt^2 )−(dy/dt)  x^2 (d^2 y/dx^2 )+x(dy/dx)−4y=16  (d^2 y/dt^2 )−(dy/dt)+(dy/dt)−4y=16  (d^2 y/dt^2 )−4y=16  ((d^2 (y+4))/dt^2 )−4(y+4)=0  ⇒y+4=A e^(2t) +B e^(−2t)   y(x=1)=0 ⇒y(t=0)=0 ⇒  0+4=A+B  (dy/dx)∣_(x=1) =0 ⇒(dy/dt)∣_(t=0) =0 ⇒  0=2A−2B  ⇒A=B=2  ⇒y+4=2(e^(2t) +e^(−2t) )=2(x^2 +(1/x^2 ))  ⇒y=2(x^2 +(1/x^2 ))−4=2(x−(1/x))^2
x=etdxdt=et=xdydx=dydt×1dxdt=dydt×1xxdydx=dydtd2ydx2=ddx(dydx)=ddt(dydx)×1dxdt=ddt(dydt×1x)×1x=(d2ydt2×1x+dydt×(1x2×dxdt))×1x=(d2ydt2×1x+dydt×(1x2×x))×1x=(d2ydt2dydt)×1x2x2d2ydx2=d2ydt2dydtx2d2ydx2+xdydx4y=16d2ydt2dydt+dydt4y=16d2ydt24y=16d2(y+4)dt24(y+4)=0y+4=Ae2t+Be2ty(x=1)=0y(t=0)=00+4=A+Bdydxx=1=0dydtt=0=00=2A2BA=B=2y+4=2(e2t+e2t)=2(x2+1x2)y=2(x2+1x2)4=2(x1x)2
Commented by peter frank last updated on 21/Feb/24
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *