Menu Close

Question-204433




Question Number 204433 by emilagazade last updated on 17/Feb/24
Commented by emilagazade last updated on 17/Feb/24
find max value for ∣DB∣+∣BC∣
findmaxvalueforDB+BC
Answered by deleteduser1 last updated on 17/Feb/24
Let ∠CAD=θ⇒CD^2 =3^2 +64×2−2×3×8(√2)cos(θ)  ⇒CD=(√(137−48(√2)cos(θ)))  AC^2 =AB^2 +BC^2 ⇒128=(3+BD)^2 +BC^2   ⇒119=BD^2 +BC^2 +6BD  CD^2 =BD^2 +BC^2 ⇒137−48(√2)cos(θ)=119−6BD  ⇒BD=((48(√2)cos(θ)−18)/6)=8(√2)cos(θ)−3  ⇒BC=(√(128−128cos^2 θ))=8(√2)sin(θ)  ⇒BD+DC=8(√2)(sinθ+cosθ)−3  ≤8(√2)((√(1+1)))(sin^2 θ+cos^2 θ)−3=13  Equality when sin(θ)=cos(θ)⇒θ=45°.
LetCAD=θCD2=32+64×22×3×82cos(θ)CD=137482cos(θ)AC2=AB2+BC2128=(3+BD)2+BC2119=BD2+BC2+6BDCD2=BD2+BC2137482cos(θ)=1196BDBD=482cos(θ)186=82cos(θ)3BC=128128cos2θ=82sin(θ)BD+DC=82(sinθ+cosθ)382(1+1)(sin2θ+cos2θ)3=13Equalitywhensin(θ)=cos(θ)θ=45°.
Answered by mr W last updated on 17/Feb/24
Commented by mr W last updated on 17/Feb/24
(∣DB∣+∣BC∣)_(max)  means also   (∣AB∣+∣BC∣)_(max) , which is   ∣AB′∣+∣B′C∣=2∣AB′∣=2×((8(√2))/( (√2)))=16.  ⇒(∣DB∣+∣BC∣)_(max) =16−3=13 ✓
(DB+BC)maxmeansalso(AB+BC)max,whichisAB+BC∣=2AB∣=2×822=16.(DB+BC)max=163=13
Commented by mr W last updated on 17/Feb/24
Method II  say ∠CAB=θ  BC=8(√2) sin θ  DB=8(√2) cos θ−3  S=DB+BC=8(√2) (cos θ+sin θ)−3     =16 sin ((π/4)+θ)−3  S_(max) =16−3=13 at θ=(π/4).
MethodIIsayCAB=θBC=82sinθDB=82cosθ3S=DB+BC=82(cosθ+sinθ)3=16sin(π4+θ)3Smax=163=13atθ=π4.
Commented by emilagazade last updated on 17/Feb/24
nice thank you a lot
nicethankyoualot
Answered by cortano12 last updated on 18/Feb/24

Leave a Reply

Your email address will not be published. Required fields are marked *