Question Number 204421 by necx122 last updated on 17/Feb/24
$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} \:=\:\mathrm{35} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${solve}\:{for}\:{all}\:{possible}\:{values}\:{of}\:{x}\:{and}\:{y} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 17/Feb/24
$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} \:=\:\mathrm{35} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}^{\mathrm{3}} }+\frac{\mathrm{1}}{{y}^{\mathrm{3}} }=\frac{\mathrm{35}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} } \\ $$$$\Rightarrow\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{3}} −\mathrm{3}\left(\frac{\mathrm{1}}{{x}}\right)\left(\frac{\mathrm{1}}{{y}}\right)\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)=\frac{\mathrm{35}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} } \\ $$$$\:\:\:\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{3}} −\frac{\mathrm{3}}{{xy}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)=\frac{\mathrm{35}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} } \\ $$$$\:\:\:\frac{\mathrm{125}}{\mathrm{216}}−\frac{\mathrm{5}}{\mathrm{2}{xy}}=\frac{\mathrm{35}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} } \\ $$$$\:\:\:\frac{\mathrm{125}{xy}−\mathrm{540}}{\mathrm{216}{xy}}=\frac{\mathrm{35}}{{x}^{\mathrm{3}} {y}^{\mathrm{3}} } \\ $$$$\:\:\:\frac{\mathrm{125}{xy}−\mathrm{540}}{\mathrm{216}}=\frac{\mathrm{35}}{{x}^{\mathrm{2}} {y}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{125}{x}^{\mathrm{3}} {y}^{\mathrm{3}} −\mathrm{540}{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{35}×\mathrm{216} \\ $$$$\:\:\:\mathrm{25}\left({xy}\right)^{\mathrm{3}} −\mathrm{108}\left({xy}\right)^{\mathrm{2}} −\mathrm{1512}=\mathrm{0} \\ $$$$\:\:\:\left({xy}−\mathrm{6}\right)\left(\:\mathrm{25}\left({xy}\right)^{\mathrm{2}} +\mathrm{42}{x}+\mathrm{252}\:\right)=\mathrm{0} \\ $$$$\:\:\:\:\:{xy}=\mathrm{6}\:,\frac{−\mathrm{42}\pm\sqrt{\mathrm{42}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{25}\right)\left(\mathrm{252}\right)}}{\mathrm{50}} \\ $$$$\:\:\:\:\:{xy}=\mathrm{6}\:,\frac{−\mathrm{21}\pm\mathrm{3}\boldsymbol{{i}}\sqrt{\mathrm{651}}}{\mathrm{25}} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\frac{{x}+{y}}{{xy}}=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\frac{{x}+{y}}{\mathrm{6}}=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${x}+{y}=\mathrm{5} \\ $$$${xy}=\mathrm{6}\:\wedge\:{x}+{y}=\mathrm{5}\Rightarrow\left({x},{y}\right)=\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right) \\ $$
Commented by necx122 last updated on 17/Feb/24
$${Wow}!\:{This}\:{is}\:{lovely}\:{and}\:{detailed}.\:{Thank}\:{you} \\ $$$${for}\:{always}\:{clearing}\:{my}\:{doubt}. \\ $$
Answered by Rasheed.Sindhi last updated on 17/Feb/24
$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\frac{\mathrm{5}}{\mathrm{6}}\Rightarrow\frac{{x}+{y}}{{xy}}=\frac{\mathrm{5}}{\mathrm{6}}\Rightarrow{xy}=\frac{\mathrm{6}\left({x}+{y}\right)}{\mathrm{5}} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} \:=\:\mathrm{35}\Rightarrow\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{3}{xy}\left({x}+{y}\right)=\mathrm{35} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{3}\left(\frac{\mathrm{6}\left({x}+{y}\right)}{\mathrm{5}}\right)\left({x}+{y}\right)=\mathrm{35} \\ $$$$\mathrm{5}\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{18}\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{175}=\mathrm{0} \\ $$$$\mathrm{5}{t}^{\mathrm{3}} −\mathrm{18}{t}^{\mathrm{2}} −\mathrm{175}=\mathrm{0};\:\left[{t}={x}+{y}\right] \\ $$$$\left({t}−\mathrm{5}\right)\left(\mathrm{5}{t}^{\mathrm{2}} +\mathrm{7}{t}+\mathrm{35}\right)=\mathrm{0} \\ $$$${t}=\mathrm{5},\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}} \\ $$$${x}+{y}=\mathrm{5},\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}} \\ $$$${xy}=\frac{\mathrm{6}\left({x}+{y}\right)}{\mathrm{5}}=\frac{\mathrm{6}\left(\mathrm{5}\right)}{\mathrm{5}},\frac{\mathrm{6}\left(\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}\right)}{\mathrm{5}} \\ $$$${xy}=\mathrm{6},\frac{\mathrm{3}\left(−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}\:\right)}{\mathrm{25}} \\ $$$${x}+{y}=\mathrm{5}\:\wedge\:{xy}=\mathrm{6}\:\Rightarrow\left({x},{y}\right)=\left(\mathrm{2},\mathrm{5}\right),\left(\mathrm{5},\mathrm{2}\right) \\ $$$$\: \\ $$$${x}+{y}=\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}\:\wedge\:{xy}=\frac{\mathrm{3}\left(−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}\:\right)}{\mathrm{25}} \\ $$$${y}=\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}−{x} \\ $$$$\:\:\:\wedge\:{x}\left(\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}−{x}\right)=\frac{\mathrm{3}\left(−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}\:\right)}{\mathrm{25}} \\ $$$$\:\:\:\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}{x}−{x}^{\mathrm{2}} =\frac{\mathrm{3}\left(−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}\:\right)}{\mathrm{25}} \\ $$$$\:\:\:{x}^{\mathrm{2}} −\frac{−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}}{\mathrm{10}}{x}+\frac{\mathrm{3}\left(−\mathrm{7}\pm{i}\sqrt{\mathrm{651}}\:\right)}{\mathrm{25}}=\mathrm{0} \\ $$$${Continue} \\ $$
Answered by Frix last updated on 17/Feb/24
$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{35} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{5}}{\mathrm{6}}\:\Leftrightarrow\:\mathrm{5}{xy}=\mathrm{6}\left({x}+{y}\right) \\ $$$${x}={u}−{v}\wedge{y}={u}+{v} \\ $$$$\mathrm{2}{u}^{\mathrm{3}} +\mathrm{6}{uv}^{\mathrm{2}} =\mathrm{35} \\ $$$$\mathrm{5}{u}^{\mathrm{2}} −\mathrm{5}{v}^{\mathrm{2}} =\mathrm{12}{u} \\ $$$$\Rightarrow \\ $$$$\frac{\mathrm{35}−\mathrm{2}{u}^{\mathrm{3}} }{\mathrm{6}{u}}=\frac{\mathrm{5}{u}^{\mathrm{2}} −\mathrm{12}{u}}{\mathrm{5}} \\ $$$${u}^{\mathrm{3}} −\frac{\mathrm{9}{u}^{\mathrm{2}} }{\mathrm{5}}−\frac{\mathrm{35}}{\mathrm{8}}=\mathrm{0} \\ $$$${u}=\frac{\mathrm{5}}{\mathrm{2}}\:\Rightarrow\:{v}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${u}=−\frac{\mathrm{7}}{\mathrm{20}}\pm\frac{\sqrt{\mathrm{651}}}{\mathrm{20}}\mathrm{i}\:\Rightarrow\:{v}=\frac{\sqrt{−\mathrm{133}+\mathrm{10}\sqrt{\mathrm{6433}}}}{\mathrm{20}}\mp\frac{\sqrt{\mathrm{133}+\mathrm{10}\sqrt{\mathrm{6433}}}}{\mathrm{20}}\mathrm{i} \\ $$$$\Rightarrow\:{x},\:{y} \\ $$