Question Number 204472 by mnjuly1970 last updated on 18/Feb/24
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Calculate}\:… \\ $$$$\:\:\:\:\:\:\:\Omega=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\lfloor\frac{\:\mathrm{1}}{\:\sqrt[{{k}}]{{e}}\:−\mathrm{1}}\:\rfloor\:=? \\ $$$$ \\ $$
Answered by TonyCWX08 last updated on 18/Feb/24
$${when}\:{k}=\mathrm{1} \\ $$$$\lfloor\frac{\mathrm{1}}{{e}−\mathrm{1}}\rfloor=\lfloor\mathrm{0}.\mathrm{582}\rfloor=\mathrm{0} \\ $$$$ \\ $$$${when}\:{k}\:=\:\mathrm{2} \\ $$$$\lfloor\frac{\mathrm{1}}{\:\sqrt{{e}}−\mathrm{1}}\rfloor=\lfloor\mathrm{1}.\mathrm{541}\rfloor=\mathrm{1} \\ $$$$ \\ $$$${when}\:{k}\:=\:\mathrm{3} \\ $$$$\lfloor\frac{\mathrm{1}}{{e}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{1}}\rfloor=\lfloor\mathrm{2}.\mathrm{528}\rfloor=\mathrm{2} \\ $$$$ \\ $$$${when}\:{k}\:=\:\mathrm{4} \\ $$$$\lfloor\frac{\mathrm{1}}{{e}^{\frac{\mathrm{1}}{\mathrm{4}}} −\mathrm{1}}\rfloor=\lfloor\mathrm{3}.\mathrm{521}\rfloor=\mathrm{3} \\ $$$$ \\ $$$${So} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\lfloor\frac{\mathrm{1}}{\:\sqrt[{{k}}]{{e}}−\mathrm{1}}\rfloor \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}−\mathrm{1}\right) \\ $$$$=\frac{{n}^{\mathrm{2}} }{\mathrm{2}} \\ $$
Answered by witcher3 last updated on 18/Feb/24
$$\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{k}}} \\ $$$$\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{e}\geqslant\mathrm{e}^{\mathrm{x}} >\mathrm{1}+\mathrm{x} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{k}}+\frac{\mathrm{e}}{\mathrm{2k}^{\mathrm{2}} }\geqslant\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{k}}} −\mathrm{1}<\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\Rightarrow\frac{\mathrm{2k}^{\mathrm{2}} }{\mathrm{2k}+\mathrm{e}}\leqslant\frac{\mathrm{1}}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{k}}} −\mathrm{1}}\leqslant\mathrm{k} \\ $$$$\Rightarrow\mathrm{k}−\mathrm{1}<\mathrm{k}−\frac{\mathrm{e}}{\mathrm{2k}+\mathrm{e}}\leqslant\frac{\mathrm{1}}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{k}}} −\mathrm{1}}<\mathrm{k} \\ $$$$\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{k}}} −\mathrm{1}}\right]=\mathrm{k}−\mathrm{1} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{k}−\mathrm{1}=\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$
Commented by TonyCWX08 last updated on 19/Feb/24
$$ \\ $$$${the}\:{answer}\:{is}\:{wrong}. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\:=\:\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${But} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}−\mathrm{1}\:\neq\:\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${it}\:{should}\:{be}\:{equal}\:{to}\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$
Commented by witcher3 last updated on 19/Feb/24
$$\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{2}}\notin\mathbb{N}\:\:\mathrm{for}\:\mathrm{n}=\mathrm{2k}+\mathrm{1} \\ $$$$\underset{\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{k}=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{k}+\mathrm{a}\right)=\frac{\left.\mathrm{n}\left(\mathrm{n}+\mathrm{2a}+\mathrm{1}\right)\right)}{\mathrm{2}} \\ $$
Commented by mr W last updated on 19/Feb/24
$${it}\:{was}\:{meant}: \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{k}−\mathrm{1}\right)=\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$