Menu Close

Calculate-k-1-n-1-e-1-k-1-




Question Number 204472 by mnjuly1970 last updated on 18/Feb/24
             Calculate ...         Ω=Σ_(k=1) ^n  ⌊(( 1)/( (e)^(1/k)  −1)) ⌋ =?
CalculateΩ=nk=11ek1=?
Answered by TonyCWX08 last updated on 18/Feb/24
when k=1  ⌊(1/(e−1))⌋=⌊0.582⌋=0    when k = 2  ⌊(1/( (√e)−1))⌋=⌊1.541⌋=1    when k = 3  ⌊(1/(e^(1/3) −1))⌋=⌊2.528⌋=2    when k = 4  ⌊(1/(e^(1/4) −1))⌋=⌊3.521⌋=3    So  Σ_(k=1) ^n ⌊(1/( (e)^(1/k) −1))⌋  =Σ_(k=1) ^n (k−1)  =(n^2 /2)
whenk=11e1=0.582=0whenk=21e1=1.541=1whenk=31e131=2.528=2whenk=41e141=3.521=3Sonk=11ek1=nk=1(k1)=n22
Answered by witcher3 last updated on 18/Feb/24
e^(1/k)   1+x+(x^2 /2)e≥e^x >1+x  ⇒(1/k)+(e/(2k^2 ))≥e^(1/k) −1<(1/k)  ⇒((2k^2 )/(2k+e))≤(1/(e^(1/k) −1))≤k  ⇒k−1<k−(e/(2k+e))≤(1/(e^(1/k) −1))<k  ⇒[(1/(e^(1/k) −1))]=k−1  Σ_(k=1) ^n k−1=((n(n−1))/2)
e1k1+x+x22eex>1+x1k+e2k2e1k1<1k2k22k+e1e1k1kk1<ke2k+e1e1k1<k[1e1k1]=k1nk=1k1=n(n1)2
Commented by TonyCWX08 last updated on 19/Feb/24
  the answer is wrong.  Σ_(k=1) ^n k = ((n(n−1))/2)  But  Σ_(k=1) ^n k−1 ≠ ((n(n−1))/2)  it should be equal to (n^2 /2)
theansweriswrong.nk=1k=n(n1)2Butnk=1k1n(n1)2itshouldbeequalton22
Commented by witcher3 last updated on 19/Feb/24
(n^2 /2)∉N  for n=2k+1  Σ_1 ^n k=((n(n+1))/2)  Σ_(k=1) ^n (k+a)=((n(n+2a+1)))/2)
n22Nforn=2k+1n1k=n(n+1)2nk=1(k+a)=n(n+2a+1))2
Commented by mr W last updated on 19/Feb/24
it was meant:  Σ_(k=1) ^n (k−1)=((n(n−1))/2)
itwasmeant:nk=1(k1)=n(n1)2

Leave a Reply

Your email address will not be published. Required fields are marked *