Menu Close

solve-for-x-C-3-2ix-3-ix-2-5-0-




Question Number 204512 by Ghisom last updated on 20/Feb/24
solve for x∈C  3^(2ix) −3^(ix) 2+5=0
solveforxC32ix3ix2+5=0
Answered by Rasheed.Sindhi last updated on 20/Feb/24
(3^(ix) )^2 −2(3^(ix) )+1+4=0  (3^(ix) −1)^2 =−4  3^(ix) −1=±2i  3^(ix) =1±2i  ln(3^(ix) )=ln(1±2i)   x=((ln(1±2i) )/(iln 3 ))   x=−((iln(1±2i) )/(ln 3 ))
(3ix)22(3ix)+1+4=0(3ix1)2=43ix1=±2i3ix=1±2iln(3ix)=ln(1±2i)x=ln(1±2i)iln3x=iln(1±2i)ln3
Commented by Ghisom last updated on 20/Feb/24
thank you
Answered by Frix last updated on 20/Feb/24
With x=a+bi; a, b ∈R we get:  Real part:  (1/9^b )(2cos^2  (aln 3) −3^b 2cos (aln 3) +9^b 5−1)=0  Imaginary part:  (2/9^b )(cos (aln 3) −3^b )sin (aln 3) =0  (1/9^b )≠0 ⇒   { (((1) cos^2  (aln 3) −3^b cos (aln 3) +((9^b 5−1)/2)=0)),(((2) (cos (aln 3) −3^b )sin (aln 3) =0)) :}  (2)  With sin (aln 3) =0 ⇒ b∉R  cos (aln 3) =3^b  ⇒  (1) 9^b =(1/5) ⇒ b=−((ln 5)/(2ln 3))  ⇒ cos (aln 3) =((√5)/5) ⇒ a=((2nπ±cos^(−1)  ((√5)/5))/(ln 3))    x=((2nπ±cos^(−1)  ((√5)/5))/(ln 3))−((ln 5)/(2ln 3))i; n∈Z
Withx=a+bi;a,bRweget:Realpart:19b(2cos2(aln3)3b2cos(aln3)+9b51)=0Imaginarypart:29b(cos(aln3)3b)sin(aln3)=019b0{(1)cos2(aln3)3bcos(aln3)+9b512=0(2)(cos(aln3)3b)sin(aln3)=0(2)Withsin(aln3)=0bRcos(aln3)=3b(1)9b=15b=ln52ln3cos(aln3)=55a=2nπ±cos155ln3x=2nπ±cos155ln3ln52ln3i;nZ
Commented by Ghisom last updated on 20/Feb/24
thank you

Leave a Reply

Your email address will not be published. Required fields are marked *