Question Number 204595 by SEKRET last updated on 22/Feb/24
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\:=\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:−\:\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{57}\boldsymbol{\mathrm{x}}\:+\mathrm{1}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{a}}\right)=\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{b}}\right)=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{c}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{5}}]{\boldsymbol{\mathrm{a}}}\:+\:\sqrt[{\mathrm{5}}]{\boldsymbol{\mathrm{b}}\:}\:+\:\sqrt[{\mathrm{5}}]{\boldsymbol{\mathrm{c}}\:}\:=\:? \\ $$
Answered by mr W last updated on 22/Feb/24
$${t}=\sqrt[{\mathrm{5}}]{{x}}\Rightarrow{x}={t}^{\mathrm{5}} \\ $$$${t}^{\mathrm{15}} −\mathrm{16}{t}^{\mathrm{10}} −\mathrm{57}{t}^{\mathrm{5}} +\mathrm{1}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}\right)\left({t}^{\mathrm{12}} +{t}^{\mathrm{11}} +…+\mathrm{2}{t}+\mathrm{1}\right)=\mathrm{0} \\ $$$${t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\sqrt[{\mathrm{5}}]{{a}}+\sqrt[{\mathrm{5}}]{{b}}+\sqrt[{\mathrm{5}}]{{c}}={t}_{\mathrm{1}} +{t}_{\mathrm{2}} +{t}_{\mathrm{3}} =\mathrm{1}\:\checkmark \\ $$
Commented by SEKRET last updated on 22/Feb/24
$$\:\:\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{sir}} \\ $$
Commented by Satyam1234 last updated on 23/Feb/24
$${How}\:{to}\:{get}\:{third}\:{step}\:{from}\:{second}? \\ $$
Commented by mr W last updated on 23/Feb/24
$${factorization}\:{of}\:{polynomial}\:{with}\: \\ $$$${help}\:{of}\:{computer}\:{program} \\ $$