Question Number 204573 by MathedUp last updated on 22/Feb/24
$$\mathrm{How}\:\mathrm{Can}\:\mathrm{derive}\:\mathrm{LambertW}\left({z}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\:\mathrm{Form}\:\mathrm{of}\:\mathrm{integral}??? \\ $$$$\mathrm{W}\left({z}\right)=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{ln}\left(\mathrm{1}+\frac{{z}\centerdot\mathrm{sin}\left({t}\right)}{{t}}{e}^{{t}\centerdot\mathrm{cot}\left({t}\right)} \right)\mathrm{d}{t}\:,\:{z}\in\left[−\frac{\mathrm{1}}{{e}},\infty\right) \\ $$$$\mathrm{Or}\:\mathrm{Similar}\:\mathrm{to}\:\mathrm{the}\:\mathrm{example}.\mathrm{LambertW}\left({z}\right) \\ $$$$\mathrm{How}\:\mathrm{other}\:\mathrm{Functions}\:\mathrm{can}\:\mathrm{be}\:\mathrm{Derived}\:\mathrm{in}\:\mathrm{Integral}\:\mathrm{Form} \\ $$
Commented by TonyCWX08 last updated on 22/Feb/24
$$ \\ $$$${Thank}\:{you}\:{for}\:{this} \\ $$
Commented by mr W last updated on 22/Feb/24
$${is}\:{Rambert}\:{the}\:{same}\:{person}\:{as} \\ $$$${Lambert}? \\ $$
Commented by MathedUp last updated on 22/Feb/24
$$\mathrm{Oops}…\mathrm{Rambert}\rightarrow\mathrm{Lambert} \\ $$