Menu Close

a-b-c-R-If-a-b-c-1-Prove-that-a-b-c-1-3-




Question Number 204621 by hardmath last updated on 23/Feb/24
a , b , c ∈ R^+   If   (√a) + (√b) + (√c) = 1  Prove that:   a + b + c ≥ (1/3)
a,b,cR+Ifa+b+c=1Provethat:a+b+c13
Answered by A5T last updated on 23/Feb/24
((a+b+c)/3)≥((((√a)+(√b)+(√c))/3))^2 =(1/9)⇒a+b+c≥(1/3)
a+b+c3(a+b+c3)2=19a+b+c13
Answered by mr W last updated on 23/Feb/24
a+b+c=((((√a))^2 )/1)+((((√b))^2 )/1)+((((√c))^2 )/1)                 ≥((((√a)+(√b)+(√c))^2 )/(1+1+1))=(1^2 /3)=(1/3)
a+b+c=(a)21+(b)21+(c)21(a+b+c)21+1+1=123=13
Commented by mr W last updated on 23/Feb/24
Answered by mr W last updated on 24/Feb/24
Commented by mr W last updated on 24/Feb/24
say (√a)=x, (√b)=y, (√c)=z  x+y+z=1 is the plane ΔABC.  P(x,y,z) is a point on the plane.  a+b+c=x^2 +y^2 +z^2 =OP^2   OP_(min)  is the distance d from O to the  plane ΔABC.  OP_(min) =d=((∣0+0+0−1∣)/( (√(1^2 +1^2 +1^2 ))))=(1/( (√3)))  OP_(min) ^2 =(1/3)  ⇒a+b+c=OP^2 ≥OP_(min) ^2 =(1/3)
saya=x,b=y,c=zx+y+z=1istheplaneΔABC.P(x,y,z)isapointontheplane.a+b+c=x2+y2+z2=OP2OPministhedistancedfromOtotheplaneΔABC.OPmin=d=0+0+0112+12+12=13OPmin2=13a+b+c=OP2OPmin2=13
Commented by hardmath last updated on 24/Feb/24
Perfect solution, thank you dear professor
Perfectsolution,thankyoudearprofessor

Leave a Reply

Your email address will not be published. Required fields are marked *