Menu Close

Question-204628




Question Number 204628 by MM42 last updated on 23/Feb/24
$$ \\ $$
Answered by MM42 last updated on 23/Feb/24
Answered by A5T last updated on 23/Feb/24
Commented by A5T last updated on 23/Feb/24
((sin 60)/(EB))=((sin40)/(BC))⇒EB=((BCsin60)/(sin40))=((BC(√3))/(2sin40))  ⇒EC^2 =((3BC^2 )/(4sin^2 40))+BC^2 −((BC^2 cos80(√3))/(sin40))  ⇒EC=BC(√((3/(4sin^2 40))−(((√3)cos80)/(sin40))+1))  ((DC)/(sin 70))=((BC)/(sin30))⇒DC=2BCsin70  ((sin(30+a))/(EC))=((sin(130−a))/(DC))  ⇒((sin(30°+a))/( (√(1+(3/(4sin^2 40°))−(((√3)cos80)/(sin40°))))))=((sin(130°−a))/(2sin70°))  ⇒a=20°
$$\frac{{sin}\:\mathrm{60}}{{EB}}=\frac{{sin}\mathrm{40}}{{BC}}\Rightarrow{EB}=\frac{{BCsin}\mathrm{60}}{{sin}\mathrm{40}}=\frac{{BC}\sqrt{\mathrm{3}}}{\mathrm{2}{sin}\mathrm{40}} \\ $$$$\Rightarrow{EC}^{\mathrm{2}} =\frac{\mathrm{3}{BC}^{\mathrm{2}} }{\mathrm{4}{sin}^{\mathrm{2}} \mathrm{40}}+{BC}^{\mathrm{2}} −\frac{{BC}^{\mathrm{2}} {cos}\mathrm{80}\sqrt{\mathrm{3}}}{{sin}\mathrm{40}} \\ $$$$\Rightarrow{EC}={BC}\sqrt{\frac{\mathrm{3}}{\mathrm{4}{sin}^{\mathrm{2}} \mathrm{40}}−\frac{\sqrt{\mathrm{3}}{cos}\mathrm{80}}{{sin}\mathrm{40}}+\mathrm{1}} \\ $$$$\frac{{DC}}{{sin}\:\mathrm{70}}=\frac{{BC}}{{sin}\mathrm{30}}\Rightarrow{DC}=\mathrm{2}{BCsin}\mathrm{70} \\ $$$$\frac{{sin}\left(\mathrm{30}+{a}\right)}{{EC}}=\frac{{sin}\left(\mathrm{130}−{a}\right)}{{DC}} \\ $$$$\Rightarrow\frac{{sin}\left(\mathrm{30}°+{a}\right)}{\:\sqrt{\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}{sin}^{\mathrm{2}} \mathrm{40}°}−\frac{\sqrt{\mathrm{3}}{cos}\mathrm{80}}{{sin}\mathrm{40}°}}}=\frac{{sin}\left(\mathrm{130}°−{a}\right)}{\mathrm{2}{sin}\mathrm{70}°} \\ $$$$\Rightarrow{a}=\mathrm{20}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *