Menu Close

Consider-point-A-inside-a-triangle-with-sides-3-4-and-5-if-d-is-the-sum-of-the-distances-of-this-point-from-the-sides-what-is-the-smallest-value-of-d-




Question Number 204657 by es last updated on 24/Feb/24
Consider point A inside a triangle  with sides 3,4 and 5. if d  is the sum   of the distances  of this point from  the sides.what is the smallest  value of d?
$${Consider}\:{point}\:{A}\:{inside}\:{a}\:{triangle} \\ $$$${with}\:{sides}\:\mathrm{3},\mathrm{4}\:{and}\:\mathrm{5}.\:{if}\:{d}\:\:{is}\:{the}\:{sum} \\ $$$$\:{of}\:{the}\:{distances}\:\:{of}\:{this}\:{point}\:{from} \\ $$$${the}\:{sides}.{what}\:{is}\:{the}\:{smallest} \\ $$$${value}\:{of}\:{d}? \\ $$$$ \\ $$
Answered by mr W last updated on 24/Feb/24
d_(min) =((3×4)/5)=2.4  d_(max) =((3×4)/3)=4
$${d}_{{min}} =\frac{\mathrm{3}×\mathrm{4}}{\mathrm{5}}=\mathrm{2}.\mathrm{4} \\ $$$${d}_{{max}} =\frac{\mathrm{3}×\mathrm{4}}{\mathrm{3}}=\mathrm{4} \\ $$
Commented by mr W last updated on 25/Feb/24
generally:  d_(min) =((2Δ)/(max(a,b,c)))  d_(max) =((2Δ)/(min(a,b,c)))  with Δ=area of triangle
$${generally}: \\ $$$${d}_{{min}} =\frac{\mathrm{2}\Delta}{{max}\left({a},{b},{c}\right)} \\ $$$${d}_{{max}} =\frac{\mathrm{2}\Delta}{{min}\left({a},{b},{c}\right)} \\ $$$${with}\:\Delta={area}\:{of}\:{triangle} \\ $$
Commented by mr W last updated on 26/Feb/24

Leave a Reply

Your email address will not be published. Required fields are marked *