Menu Close

if-f-f-x-x-2-3x-4-find-f-1-




Question Number 204671 by mr W last updated on 25/Feb/24
if f(f(x))=x^2 −3x+4, find f(1)=?
$${if}\:{f}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4},\:{find}\:{f}\left(\mathrm{1}\right)=? \\ $$
Answered by witcher3 last updated on 25/Feb/24
f(f(x))=x^2 −3x+4  f(f(1))=2  f((f(2))=2  ⇒f(f(f(2))=f(2)=f^2 (2)−3f(2)+4⇒f(2)=2  f(f(f(1))=f(2)=2  ⇒f(1)^2 −3f(1)+4=2⇒f^2 (1)−3f(1)+2=0  ⇒f(1)∈{1,2}  f(f(1))=2⇒f(1)=2 impossible  ⇒f(1)=2
$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{4} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{1}\right)\right)=\mathrm{2} \\ $$$$\mathrm{f}\left(\left(\mathrm{f}\left(\mathrm{2}\right)\right)=\mathrm{2}\right. \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{2}\right)\right)=\mathrm{f}\left(\mathrm{2}\right)=\mathrm{f}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{3f}\left(\mathrm{2}\right)+\mathrm{4}\Rightarrow\mathrm{f}\left(\mathrm{2}\right)=\mathrm{2}\right. \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{1}\right)\right)=\mathrm{f}\left(\mathrm{2}\right)=\mathrm{2}\right. \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3f}\left(\mathrm{1}\right)+\mathrm{4}=\mathrm{2}\Rightarrow\mathrm{f}^{\mathrm{2}} \left(\mathrm{1}\right)−\mathrm{3f}\left(\mathrm{1}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{1}\right)\in\left\{\mathrm{1},\mathrm{2}\right\} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{1}\right)\right)=\mathrm{2}\Rightarrow\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2}\:\mathrm{impossible} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2} \\ $$
Commented by mr W last updated on 25/Feb/24
great!
$${great}! \\ $$
Answered by A5T last updated on 25/Feb/24
f(x)=f(y)⇒f(f(x))=f(f(y))⇒x^2 −3x=y^2 −3y  ⇒(x−y)(x+y)=3(x−y)⇒x=y or x=3−y  ⇒f(x)=f(3−x)⇒f(1)=f(2)  f(f(2))=2  f(f(f(2)))=f(2)=[f(2)]^2 −3f(2)+4⇒[f(2)−2]^2 =0  ⇒f(2)=2=f(1)
$${f}\left({x}\right)={f}\left({y}\right)\Rightarrow{f}\left({f}\left({x}\right)\right)={f}\left({f}\left({y}\right)\right)\Rightarrow{x}^{\mathrm{2}} −\mathrm{3}{x}={y}^{\mathrm{2}} −\mathrm{3}{y} \\ $$$$\Rightarrow\left({x}−{y}\right)\left({x}+{y}\right)=\mathrm{3}\left({x}−{y}\right)\Rightarrow{x}={y}\:{or}\:{x}=\mathrm{3}−{y} \\ $$$$\Rightarrow{f}\left({x}\right)={f}\left(\mathrm{3}−{x}\right)\Rightarrow{f}\left(\mathrm{1}\right)={f}\left(\mathrm{2}\right) \\ $$$${f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{2} \\ $$$${f}\left({f}\left({f}\left(\mathrm{2}\right)\right)\right)={f}\left(\mathrm{2}\right)=\left[{f}\left(\mathrm{2}\right)\right]^{\mathrm{2}} −\mathrm{3}{f}\left(\mathrm{2}\right)+\mathrm{4}\Rightarrow\left[{f}\left(\mathrm{2}\right)−\mathrm{2}\right]^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{2}\right)=\mathrm{2}={f}\left(\mathrm{1}\right) \\ $$
Commented by mr W last updated on 25/Feb/24
great!
$${great}! \\ $$
Answered by es last updated on 25/Feb/24
f(x)=f^(−1) (x^2 −3x+4)→  f(1)=f^(−1) (2)  f^(−1) (x)=((3±(√(9−4(4−x))))/2)  f^(−1) (2)=((3±1)/2)=f(1)= { (2),(1) :}
$${f}\left({x}\right)={f}^{−\mathrm{1}} \left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}\right)\rightarrow \\ $$$${f}\left(\mathrm{1}\right)={f}^{−\mathrm{1}} \left(\mathrm{2}\right) \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{4}\left(\mathrm{4}−{x}\right)}}{\mathrm{2}} \\ $$$${f}^{−\mathrm{1}} \left(\mathrm{2}\right)=\frac{\mathrm{3}\pm\mathrm{1}}{\mathrm{2}}={f}\left(\mathrm{1}\right)=\begin{cases}{\mathrm{2}}\\{\mathrm{1}}\end{cases} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *