Menu Close

integrate-0-e-x-2-1-e-x-dx-




Question Number 204707 by Mummyjay last updated on 25/Feb/24
integrate ∫_0 ^∞ (e^(−x^2 ) /(1+e^x ))dx
integrate0ex21+exdx
Answered by witcher3 last updated on 26/Feb/24
Ω=∫_0 ^∞ (e^(−x^2 −x) /(1+e^(−x) ))dx=Σ_(n≥0) (−1)^n ∫_0 ^∞ e^(−(x^2 +(1+n)x)) dx  x=(1+n)y  =Σ_(n≥0) (−1)^n (n+1)∫_0 ^∞ e^(−(1+n)^2 ((y+(1/2))^2 −(1/4))) dy;(1+n)(y+(1/2))=z  =Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) ∫_((n+1)/2) ^∞ e^(−z^2 ) dz  (2/( (√π)))∫_0 ^x e^(−t^2 ) dt.erfc(x)  =Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) .(((√π)/2)−((√π)/2)erfc(((n+1)/2)))  =((√π)/2)Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) (1−erfc(((n+1)/2)))
Ω=0ex2x1+exdx=n0(1)n0e(x2+(1+n)x)dxx=(1+n)y=n0(1)n(n+1)0e(1+n)2((y+12)214)dy;(1+n)(y+12)=z=n0(1)ne(1+n2)2n+12ez2dz2π0xet2dt.erfc(x)=n0(1)ne(1+n2)2.(π2π2erfc(n+12))=π2n0(1)ne(1+n2)2(1erfc(n+12))

Leave a Reply

Your email address will not be published. Required fields are marked *