Menu Close

prove-that-cl-Q-Q-R-2-note-X-d-is-a-metric-space-A-X-x-A-cl-A-r-gt-0-B-r-x-A-




Question Number 204702 by mnjuly1970 last updated on 25/Feb/24
     prove that :         cl(Q×Q )=^?  R^2         note:   (X ,d ) is a metric space            ,   A ⊆ X :     x∈ A^(  −) =cl(A) ⇔ ∀ r >0 , B_r  (x) ∩ A ≠ φ
provethat:cl(Q×Q)=?R2note:(X,d)isametricspace,AX:xA=cl(A)r>0,Br(x)Aϕ
Answered by witcher3 last updated on 25/Feb/24
Q^− =R  cl(Q∗Q)⊂Cl(Q^− ∗Q^− )=R^2   let x(a,b)∈R^2 =(x  ⇒∃ U_n ,V_n  ∈Q  u_n →a;v_n →b  ⇒∀ε>0 ∃N;∀n≥N ;∣U_n −a∣<ε;∀ε′>0 ∃N′∈N ;∀n≥N′∣V_n −b∣<0.....(1)  since we are in finite dimensilm  lets defind A metric?over R^2   d((x,y);(x′,y′))=max(∣x−x′∣;∣y−y′∣)  let r>0   β_r (x) ∩Cl(Q^2 )  r>0 withe 1 ∃N_1 ,N_2   ∣u_n −a∣<r;∀n≥N_1   ∣u_n −b∣<r;∀n≥N_2   tack N=max(N_1 ,N_2 );∀n≥N  d((u_n ,v_n );(a,b))=max(∣u_n −a∣;∣v_n −b∣)<r  ⇒(a,b)∈cl(Q^2 )  ⇒IR^2 ⊂Cl(Q^2 )⇒equalitt
Q=Rcl(QQ)Cl(QQ)=R2letx(a,b)R2=(xUn,VnQuna;vnbϵ>0N;nN;Una∣<ϵ;ϵ>0NN;nNVnb∣<0..(1)sinceweareinfinitedimensilmletsdefindAmetric?overR2d((x,y);(x,y))=max(xx;yy)letr>0βr(x)Cl(Q2)r>0withe1N1,N2una∣<r;nN1unb∣<r;nN2tackN=max(N1,N2);nNd((un,vn);(a,b))=max(una;vnb)<r(a,b)cl(Q2)IR2Cl(Q2)equalitt
Commented by mnjuly1970 last updated on 25/Feb/24
thanks alot sir whicher
thanksalotsirwhicher
Commented by witcher3 last updated on 25/Feb/24
withe pleasur barak alah Fikoum
withepleasurbarakalahFikoum

Leave a Reply

Your email address will not be published. Required fields are marked *