Question Number 204739 by hardmath last updated on 26/Feb/24
Answered by mr W last updated on 26/Feb/24
$${x}^{\mathrm{4}} +\mathrm{2}{x}=−\mathrm{4} \\ $$$$\Rightarrow{x}^{\mathrm{3}} +\mathrm{2}=−\frac{\mathrm{4}}{{x}} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} +\mathrm{2}}=−\frac{{x}^{\mathrm{3}} }{\mathrm{4}} \\ $$$$\Sigma\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{3}} +\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{4}}\Sigma{a}^{\mathrm{3}} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{0}^{\mathrm{3}} −\mathrm{3}×\mathrm{0}×\mathrm{0}+\mathrm{3}×\left(−\mathrm{2}\right)\right]=\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$
Commented by York12 last updated on 26/Feb/24
$$\mathrm{sir}\:\mathrm{may}\:\mathrm{you}\:\mathrm{elaborate}\:\mathrm{on}\:\mathrm{the}\:\mathrm{last}\:\mathrm{step} \\ $$
Commented by mr W last updated on 26/Feb/24
$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} =\left({a}+{b}+{c}+{d}\right)^{\mathrm{3}} −\mathrm{3}\left({a}+{b}+{c}+{d}\right)\left({ab}+{bc}+{cd}+{da}+{ac}+{bd}\right)+\mathrm{3}\left({abc}+{bcd}+{cda}+{abd}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}^{\mathrm{3}} −\mathrm{3}×\mathrm{0}×\mathrm{0}+\mathrm{3}×\left(−\mathrm{2}\right)=−\mathrm{6} \\ $$$${you}\:{can}\:{get}\:{this}\:{by}\:{using}\:{newton}'{s}\: \\ $$$${identities}: \\ $$
Commented by mr W last updated on 26/Feb/24
Commented by York12 last updated on 26/Feb/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by justenspi last updated on 28/Feb/24
$$ \\ $$$${x}^{\mathrm{4}} +\mathrm{2}{x}+\mathrm{4}=\mathrm{0}\:\Leftrightarrow{x}^{\mathrm{3}} +\mathrm{2}=\frac{−\mathrm{4}}{{x}}\Leftrightarrow\frac{\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{2}}=\frac{−{x}}{\mathrm{4}}\:\Leftrightarrow\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} +\mathrm{2}}=\frac{−{x}^{\mathrm{3}} }{\mathrm{4}} \\ $$$$\Rightarrow\underset{{cyc}} {\sum}\left(\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{3}} +\mathrm{2}}\right)=\frac{−\mathrm{1}}{\mathrm{4}}\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)\:,\mathrm{According}\:\mathrm{to}\:\mathrm{vieta}\:\mathrm{formulae}\:\mathrm{we}\:\mathrm{have}\:: \\ $$$$\underset{{cyc}} {\sum}\left({a}\right)=\mathrm{0}\:,\underset{{cyc}} {\sum}\left({ab}\right)=\mathrm{0}\:,\underset{{cyc}} {\sum}\left({abc}\right)=−\mathrm{2},{abcd}=\mathrm{4}\: \\ $$$$\therefore\:\mathrm{We}\:\mathrm{have}\:\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)=\left[\underset{{cyc}} {\sum}\left({a}\right)\right].\left[\underset{{cyc}} {\sum}\left({a}^{\mathrm{2}} \right)\right]−\underset{{cyc}} {\sum}\left({a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)\right)=−\underset{{cyc}} {\sum}\left({a}\left(\left({b}+{c}+{d}\right)^{\mathrm{2}} −\mathrm{2}\left({bc}+{cd}+{db}\right)\right)\right. \\ $$$$=−\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)+\mathrm{2}\underset{{cyc}} {\sum}\left({abc}+{acd}+{adb}\right)=−\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)+\mathrm{6}\underset{{cyc}} {\sum}\left({abc}\right)\:\Leftrightarrow\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)=\mathrm{3}\underset{{cyc}} {\sum}\left({abc}\right)=−\mathrm{6} \\ $$$$\therefore\underset{{cyc}} {\sum}\left(\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{3}} +\mathrm{2}}\right)=\frac{−\mathrm{1}}{\mathrm{4}}\underset{{cyc}} {\sum}\left({a}^{\mathrm{3}} \right)=\frac{\mathrm{6}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}}\:\Box \\ $$