Menu Close

Evaluate-sinx-x-4-x-2-1-dx-I-need-full-detailed-explanation-thank-you-in-advance-




Question Number 204804 by Mastermind last updated on 27/Feb/24
Evaluate ∫((sinx)/(x^4 +x^2 +1))dx      I need full detailed explanation, thank you in  advance.
Evaluatesinxx4+x2+1dxIneedfulldetailedexplanation,thankyouinadvance.
Commented by TonyCWX08 last updated on 28/Feb/24
I would use the Contour Integration but thete is no interval...
IwouldusetheContourIntegrationbuttheteisnointerval
Commented by Mastermind last updated on 28/Feb/24
Kindly evaluate... or what do you think we  can do ?
Kindlyevaluateorwhatdoyouthinkwecando?
Commented by TonyCWX08 last updated on 28/Feb/24
  Contour Integral is used in Complex World  Usually used for the integral with interval (−∞,∞)  But in this case, it can′t be used.
ContourIntegralisusedinComplexWorldUsuallyusedfortheintegralwithinterval(,)Butinthiscase,itcantbeused.
Answered by Frix last updated on 28/Feb/24
((sin x)/(x^4 +x^2 +1))=((sin x)/((x^2 −x+1)(x^2 +x+1)))=  =(((1−x)sin x)/(x^2 −x+1))+(((1+x)sin x)/(x^2 +x+1))=  =((sin x)/(x^2 −x+1))−((xsin x)/(x^2 −x+1))+((sin x)/(x^2 +x+1))+((xsin x)/(x^2 +x+1))=  =((4sin x)/((2x−1−(√3)i)(2x−1+(√3)i)))−  −((4xsin x)/((2x−1−(√3)i)(2x−1+(√3)i)))+  +((4sin x)/((2x+1−(√3)i)(2x+1+(√3)i)))+  +((4xsin x)/((2x+1−(√3)i)(2x+1+(√3)i)))=  =((2isin x)/( (√3)(2x−1+(√3)i)))−((2isin x)/( (√3)(2x−1−(√3)i)))+  +(((1−(√3)i)sin x)/( (√3)(2x−1−(√3)i)))−((((√3)+i)sin x)/( (√3)(2x−1+(√3)i)))−  −((2isin x)/( (√3)(2x+1−(√3)i)))+((2isin x)/( (√3)(2x+1+(√3)i)))+  +((((√3)+i)sin x)/( (√3)(2x+1−(√3)i)))+((((√3)−i)sin x)/( (√3)(2x+1+(√3)i)))  (Please check for sign errors)  So essentially we need to solve integrals  of the shape  a∫((sin x)/(bx+c))dx=(a/b)(cos (c/b) Si (x+(c/b)) −sin (c/b) Ci (x+(c/b)))+C  with Si (Ci) being the Integral (Co)Sine  ∫((sin x)/x)dx=Si x +C     ∫((cos x)/x)dx=Ci x +C  Somebody finish this please.
sinxx4+x2+1=sinx(x2x+1)(x2+x+1)==(1x)sinxx2x+1+(1+x)sinxx2+x+1==sinxx2x+1xsinxx2x+1+sinxx2+x+1+xsinxx2+x+1==4sinx(2x13i)(2x1+3i)4xsinx(2x13i)(2x1+3i)++4sinx(2x+13i)(2x+1+3i)++4xsinx(2x+13i)(2x+1+3i)==2isinx3(2x1+3i)2isinx3(2x13i)++(13i)sinx3(2x13i)(3+i)sinx3(2x1+3i)2isinx3(2x+13i)+2isinx3(2x+1+3i)++(3+i)sinx3(2x+13i)+(3i)sinx3(2x+1+3i)(Pleasecheckforsignerrors)Soessentiallyweneedtosolveintegralsoftheshapeasinxbx+cdx=ab(coscbSi(x+cb)sincbCi(x+cb))+CwithSi(Ci)beingtheIntegral(Co)Sinesinxxdx=Six+Ccosxxdx=Cix+CSomebodyfinishthisplease.

Leave a Reply

Your email address will not be published. Required fields are marked *