Menu Close

Question-204756




Question Number 204756 by York12 last updated on 27/Feb/24
$$ \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
Wrong!  Given condition satisfied by:    a=0,b=0,c=1  (0+0+1)^2 =0^2 +0^2 +1^2   But the result to be proved is false.  you can see: 0=1
$$\mathrm{Wrong}! \\ $$$${Given}\:{condition}\:{satisfied}\:{by}: \\ $$$$\:\:{a}=\mathrm{0},{b}=\mathrm{0},{c}=\mathrm{1} \\ $$$$\left(\mathrm{0}+\mathrm{0}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \\ $$$${But}\:{the}\:{result}\:{to}\:{be}\:{proved}\:{is}\:{false}. \\ $$$${you}\:{can}\:{see}:\:\mathrm{0}=\mathrm{1} \\ $$
Commented by York12 last updated on 27/Feb/24
Commented by York12 last updated on 27/Feb/24
Commented by York12 last updated on 27/Feb/24
I have proved it though !!
$$\mathrm{I}\:\mathrm{have}\:\mathrm{proved}\:\mathrm{it}\:\mathrm{though}\:!! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
Then there must be flaw in your  proof!
$$\mathcal{T}{hen}\:{there}\:{must}\:{be}\:{flaw}\:{in}\:{your} \\ $$$${proof}! \\ $$
Commented by York12 last updated on 27/Feb/24
maybe , but can you see where the mistake is
$$\mathrm{maybe}\:,\:\mathrm{but}\:\mathrm{can}\:\mathrm{you}\:\mathrm{see}\:\mathrm{where}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{is} \\ $$
Commented by York12 last updated on 27/Feb/24
sir there is no such a triple cause then ((ac)/(b^2 +ac))=(0/0) !
$$\mathrm{sir}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\mathrm{a}\:\mathrm{triple}\:\mathrm{cause}\:\mathrm{then}\:\frac{\mathrm{ac}}{\mathrm{b}^{\mathrm{2}} +\mathrm{ac}}=\frac{\mathrm{0}}{\mathrm{0}}\:! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
Anyway this triple disproves the  result!
$${Anyway}\:{this}\:{triple}\:{disproves}\:{the} \\ $$$${result}! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
BTW I think, it′s not good practice  to post question as a comment of  empty question-post!
$${BTW}\:{I}\:{think},\:{it}'{s}\:{not}\:{good}\:{practice} \\ $$$${to}\:{post}\:{question}\:{as}\:{a}\:{comment}\:{of} \\ $$$${empty}\:{question}-{post}! \\ $$$$ \\ $$
Commented by York12 last updated on 27/Feb/24
no I am saying you are wrong  Σ((ab)/(c^2 +2ab)) ≠ 0 at (a,b,c)=(0,0,1)_!  but it is undefined
$$\mathrm{no}\:\mathrm{I}\:\mathrm{am}\:\mathrm{saying}\:\mathrm{you}\:\mathrm{are}\:\mathrm{wrong} \\ $$$$\Sigma\frac{\mathrm{ab}}{\mathrm{c}^{\mathrm{2}} +\mathrm{2ab}}\:\neq\:\mathrm{0}\:\mathrm{at}\:\left({a},{b},{c}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)_{!} \:\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{undefined} \\ $$
Commented by York12 last updated on 27/Feb/24
my phone is weak I can not post at once
$$\mathrm{my}\:\mathrm{phone}\:\mathrm{is}\:\mathrm{weak}\:\mathrm{I}\:\mathrm{can}\:\mathrm{not}\:\mathrm{post}\:\mathrm{at}\:\mathrm{once} \\ $$
Commented by A5T last updated on 27/Feb/24
I guess the question doesn′t actually claim that  a^2 +b^2 +c^2 =(a+b+c)^2 ; it′s just given as a   condition, sort of “given that a^2 +b^2 +c^2 =(a+b+c)^2 ,  prove that...”.   a^2 +b^2 +c^2 =(a+b+c)^2 ⇒ab+bc+ca=0 which was  used in the solution.
$${I}\:{guess}\:{the}\:{question}\:{doesn}'{t}\:{actually}\:{claim}\:{that} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} ;\:{it}'{s}\:{just}\:{given}\:{as}\:{a}\: \\ $$$${condition},\:{sort}\:{of}\:“{given}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} , \\ $$$${prove}\:{that}…''.\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} \Rightarrow{ab}+{bc}+{ca}=\mathrm{0}\:{which}\:{was} \\ $$$${used}\:{in}\:{the}\:{solution}. \\ $$
Commented by York12 last updated on 27/Feb/24
how are those different   (a+b+c)^2 =a^2 +b^2 +c^2 ⇔ab+bc+ac=0
$$\mathrm{how}\:\mathrm{are}\:\mathrm{those}\:\mathrm{different}\: \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \Leftrightarrow{ab}+{bc}+{ac}=\mathrm{0} \\ $$
Commented by A5T last updated on 27/Feb/24
I never claimed they were different, they imply  each other. I was just pointing out what the  (a+b+c)^2 =a^2 +b^2 +c^2  condition implied.
$${I}\:{never}\:{claimed}\:{they}\:{were}\:{different},\:{they}\:{imply} \\ $$$${each}\:{other}.\:{I}\:{was}\:{just}\:{pointing}\:{out}\:{what}\:{the} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:{condition}\:{implied}. \\ $$
Commented by A5T last updated on 27/Feb/24
If the proof is correct, then Σ((bc)/(a^2 +2bc))=1 when  all terms are defined, but the case of (0,0,1),  not all terms are defined. Since the proof   assumed all the terms are defined, that  additional condition could have been given.
$${If}\:{the}\:{proof}\:{is}\:{correct},\:{then}\:\Sigma\frac{{bc}}{{a}^{\mathrm{2}} +\mathrm{2}{bc}}=\mathrm{1}\:{when} \\ $$$${all}\:{terms}\:{are}\:{defined},\:{but}\:{the}\:{case}\:{of}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right), \\ $$$${not}\:{all}\:{terms}\:{are}\:{defined}.\:{Since}\:{the}\:{proof}\: \\ $$$${assumed}\:{all}\:{the}\:{terms}\:{are}\:{defined},\:{that} \\ $$$${additional}\:{condition}\:{could}\:{have}\:{been}\:{given}. \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
yes sir, additional condition must  be given.  BTW do you think the proof correct?
$${yes}\:{sir},\:{additional}\:{condition}\:{must} \\ $$$${be}\:{given}. \\ $$$${BTW}\:{do}\:{you}\:{think}\:{the}\:{proof}\:{correct}? \\ $$
Commented by York12 last updated on 27/Feb/24
no (0,0,1) is not defined    ((bc)/(a^2 +2bc))=((0×c)/(0^2 +2×0×c))=(0/0) →(not defined)  ((ac)/(b^2 +2ac))=((0×c)/(0^2 +2×0×0))=(0/0)→(not defined)  ((ab)/(c^2 +2ab))=(0/(1+0))=0
$$\mathrm{no}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined} \\ $$$$ \\ $$$$\frac{\mathrm{bc}}{\mathrm{a}^{\mathrm{2}} +\mathrm{2bc}}=\frac{\mathrm{0}×{c}}{\mathrm{0}^{\mathrm{2}} +\mathrm{2}×\mathrm{0}×{c}}=\frac{\mathrm{0}}{\mathrm{0}}\:\rightarrow\left(\mathrm{not}\:\mathrm{defined}\right) \\ $$$$\frac{{ac}}{{b}^{\mathrm{2}} +\mathrm{2}{ac}}=\frac{\mathrm{0}×{c}}{\mathrm{0}^{\mathrm{2}} +\mathrm{2}×\mathrm{0}×\mathrm{0}}=\frac{\mathrm{0}}{\mathrm{0}}\rightarrow\left(\mathrm{not}\:\mathrm{defined}\right) \\ $$$$\frac{{ab}}{{c}^{\mathrm{2}} +\mathrm{2}{ab}}=\frac{\mathrm{0}}{\mathrm{1}+\mathrm{0}}=\mathrm{0} \\ $$
Commented by York12 last updated on 27/Feb/24
No concentrate well
$$\mathrm{No}\:\mathrm{concentrate}\:\mathrm{well} \\ $$
Commented by A5T last updated on 27/Feb/24
Did I claim (0,0,1) was defined? I guess you  are the one who should concentrate well.
$${Did}\:{I}\:{claim}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)\:{was}\:{defined}?\:{I}\:{guess}\:{you} \\ $$$${are}\:{the}\:{one}\:{who}\:{should}\:{concentrate}\:{well}. \\ $$
Commented by A5T last updated on 27/Feb/24
The statement is correct provided all the terms  are defined. I have a different proof below  by expansion and simplification.
$${The}\:{statement}\:{is}\:{correct}\:{provided}\:{all}\:{the}\:{terms} \\ $$$${are}\:{defined}.\:{I}\:{have}\:{a}\:{different}\:{proof}\:{below} \\ $$$${by}\:{expansion}\:{and}\:{simplification}. \\ $$
Commented by Frix last updated on 27/Feb/24
It′s claimed a, b, c ∈R. Thus it′s not true in  some cases. It must be stated when exactly  it′s true otherwise the proof is incomplete.
$$\mathrm{It}'\mathrm{s}\:\mathrm{claimed}\:{a},\:{b},\:{c}\:\in\mathbb{R}.\:\mathrm{Thus}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{true}\:\mathrm{in} \\ $$$$\mathrm{some}\:\mathrm{cases}.\:\mathrm{It}\:\mathrm{must}\:\mathrm{be}\:\mathrm{stated}\:\mathrm{when}\:\mathrm{exactly} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{otherwise}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{is}\:\mathrm{incomplete}. \\ $$
Commented by A5T last updated on 27/Feb/24
The statement is true when none of a^2 +2bc,  b^2 +2ac,c^2 +2ab is 0 or otherwise when all of  ((bc)/(a^2 +2bc));((ac)/(b^2 +2ac));((ab)/(c^2 +2ab)) are defined.
$${The}\:{statement}\:{is}\:{true}\:{when}\:{none}\:{of}\:{a}^{\mathrm{2}} +\mathrm{2}{bc}, \\ $$$${b}^{\mathrm{2}} +\mathrm{2}{ac},{c}^{\mathrm{2}} +\mathrm{2}{ab}\:{is}\:\mathrm{0}\:{or}\:{otherwise}\:{when}\:{all}\:{of} \\ $$$$\frac{{bc}}{{a}^{\mathrm{2}} +\mathrm{2}{bc}};\frac{{ac}}{{b}^{\mathrm{2}} +\mathrm{2}{ac}};\frac{{ab}}{{c}^{\mathrm{2}} +\mathrm{2}{ab}}\:{are}\:{defined}. \\ $$
Commented by York12 last updated on 27/Feb/24
hmmm okay
$$\mathrm{hmmm}\:\mathrm{okay} \\ $$
Answered by A5T last updated on 27/Feb/24
=((Σ(b^3 c^3 +2ab^4 c+2abc^4 +4a^2 b^2 c^2 ))/(a^2 b^2 c^2 +2a^3 b^3 +2a^3 c^3 +2b^3 c^3 +4abc(a^3 +b^3 +c^3 )+8Πa^2 ))  =((15a^2 b^2 c^2 +4abc(a^3 +b^3 +c^3 ))/(15a^2 b^2 c^2 +4abc(a^3 +b^3 +c^3 )))=1    Details:  Σ[bc(b^2 +2ac)(c^2 +2ab)]  =Σ(b^3 c^3 +2ab^4 c+2abc^4 +4a^2 b^2 c^2 )  =Σa^3 b^3 +Σ2abc(a^3 +b^3 )+12a^2 b^2 c^2   =a^3 b^3 +b^3 c^3 +c^3 a^3 +4abc(a^3 +b^3 +c^3 )+12a^2 b^2 c^2   (ab+bc)^3 +(ac)^3 −3ab^2 c(ab+bc)+4abc(Σa^3 )+12Πa^2   =−3ab^2 c(ab+bc)−3ab^2 c(ca)+3a^2 b^2 c^2 +12Πa^2 +4abc(Σa^3 )  =15a^2 b^2 c^2 +4abc(Σa^3 )    (a^2 +2bc)(b^2 +2ac)(c^2 +2ab)  =(a^2 +2bc)(b^2 c^2 +2ab^3 +2ac^3 +4a^2 bc)  =a^2 b^2 c^2 +2a^3 b^3 +2a^3 c^3 +4a^3 bc+2b^3 c^3 +4ab^4 c  +4abc^4 +8a^2 b^2 c^2   =7a^2 b^2 c^2 +4abc(a^3 +b^3 +c^3 )+8a^2 b^2 c^2
$$=\frac{\Sigma\left({b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{ab}^{\mathrm{4}} {c}+\mathrm{2}{abc}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{8}\Pi{a}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)}{\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)}=\mathrm{1} \\ $$$$ \\ $$$$\underline{{Details}:} \\ $$$$\Sigma\left[{bc}\left({b}^{\mathrm{2}} +\mathrm{2}{ac}\right)\left({c}^{\mathrm{2}} +\mathrm{2}{ab}\right)\right] \\ $$$$=\Sigma\left({b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{ab}^{\mathrm{4}} {c}+\mathrm{2}{abc}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \right) \\ $$$$=\Sigma{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\Sigma\mathrm{2}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)+\mathrm{12}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$={a}^{\mathrm{3}} {b}^{\mathrm{3}} +{b}^{\mathrm{3}} {c}^{\mathrm{3}} +{c}^{\mathrm{3}} {a}^{\mathrm{3}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{12}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$\left({ab}+{bc}\right)^{\mathrm{3}} +\left({ac}\right)^{\mathrm{3}} −\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ab}+{bc}\right)+\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right)+\mathrm{12}\Pi{a}^{\mathrm{2}} \\ $$$$=−\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ab}+{bc}\right)−\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ca}\right)+\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{12}\Pi{a}^{\mathrm{2}} +\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right) \\ $$$$=\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right) \\ $$$$ \\ $$$$\left({a}^{\mathrm{2}} +\mathrm{2}{bc}\right)\left({b}^{\mathrm{2}} +\mathrm{2}{ac}\right)\left({c}^{\mathrm{2}} +\mathrm{2}{ab}\right) \\ $$$$=\left({a}^{\mathrm{2}} +\mathrm{2}{bc}\right)\left({b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{ab}^{\mathrm{3}} +\mathrm{2}{ac}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} {bc}\right) \\ $$$$={a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{3}} {bc}+\mathrm{2}{b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{ab}^{\mathrm{4}} {c} \\ $$$$+\mathrm{4}{abc}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$=\mathrm{7}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{8}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$
Commented by York12 last updated on 27/Feb/24
Perfect sir !
$$\mathrm{Perfect}\:\mathrm{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *