Question Number 204756 by York12 last updated on 27/Feb/24
$$ \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
$$\mathrm{Wrong}! \\ $$$${Given}\:{condition}\:{satisfied}\:{by}: \\ $$$$\:\:{a}=\mathrm{0},{b}=\mathrm{0},{c}=\mathrm{1} \\ $$$$\left(\mathrm{0}+\mathrm{0}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \\ $$$${But}\:{the}\:{result}\:{to}\:{be}\:{proved}\:{is}\:{false}. \\ $$$${you}\:{can}\:{see}:\:\mathrm{0}=\mathrm{1} \\ $$
Commented by York12 last updated on 27/Feb/24
Commented by York12 last updated on 27/Feb/24
Commented by York12 last updated on 27/Feb/24
$$\mathrm{I}\:\mathrm{have}\:\mathrm{proved}\:\mathrm{it}\:\mathrm{though}\:!! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
$$\mathcal{T}{hen}\:{there}\:{must}\:{be}\:{flaw}\:{in}\:{your} \\ $$$${proof}! \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{maybe}\:,\:\mathrm{but}\:\mathrm{can}\:\mathrm{you}\:\mathrm{see}\:\mathrm{where}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{is} \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{sir}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\mathrm{a}\:\mathrm{triple}\:\mathrm{cause}\:\mathrm{then}\:\frac{\mathrm{ac}}{\mathrm{b}^{\mathrm{2}} +\mathrm{ac}}=\frac{\mathrm{0}}{\mathrm{0}}\:! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
$${Anyway}\:{this}\:{triple}\:{disproves}\:{the} \\ $$$${result}! \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
$${BTW}\:{I}\:{think},\:{it}'{s}\:{not}\:{good}\:{practice} \\ $$$${to}\:{post}\:{question}\:{as}\:{a}\:{comment}\:{of} \\ $$$${empty}\:{question}-{post}! \\ $$$$ \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{no}\:\mathrm{I}\:\mathrm{am}\:\mathrm{saying}\:\mathrm{you}\:\mathrm{are}\:\mathrm{wrong} \\ $$$$\Sigma\frac{\mathrm{ab}}{\mathrm{c}^{\mathrm{2}} +\mathrm{2ab}}\:\neq\:\mathrm{0}\:\mathrm{at}\:\left({a},{b},{c}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)_{!} \:\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{undefined} \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{my}\:\mathrm{phone}\:\mathrm{is}\:\mathrm{weak}\:\mathrm{I}\:\mathrm{can}\:\mathrm{not}\:\mathrm{post}\:\mathrm{at}\:\mathrm{once} \\ $$
Commented by A5T last updated on 27/Feb/24
$${I}\:{guess}\:{the}\:{question}\:{doesn}'{t}\:{actually}\:{claim}\:{that} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} ;\:{it}'{s}\:{just}\:{given}\:{as}\:{a}\: \\ $$$${condition},\:{sort}\:{of}\:“{given}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} , \\ $$$${prove}\:{that}…''.\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({a}+{b}+{c}\right)^{\mathrm{2}} \Rightarrow{ab}+{bc}+{ca}=\mathrm{0}\:{which}\:{was} \\ $$$${used}\:{in}\:{the}\:{solution}. \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{how}\:\mathrm{are}\:\mathrm{those}\:\mathrm{different}\: \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \Leftrightarrow{ab}+{bc}+{ac}=\mathrm{0} \\ $$
Commented by A5T last updated on 27/Feb/24
$${I}\:{never}\:{claimed}\:{they}\:{were}\:{different},\:{they}\:{imply} \\ $$$${each}\:{other}.\:{I}\:{was}\:{just}\:{pointing}\:{out}\:{what}\:{the} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:{condition}\:{implied}. \\ $$
Commented by A5T last updated on 27/Feb/24
$${If}\:{the}\:{proof}\:{is}\:{correct},\:{then}\:\Sigma\frac{{bc}}{{a}^{\mathrm{2}} +\mathrm{2}{bc}}=\mathrm{1}\:{when} \\ $$$${all}\:{terms}\:{are}\:{defined},\:{but}\:{the}\:{case}\:{of}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right), \\ $$$${not}\:{all}\:{terms}\:{are}\:{defined}.\:{Since}\:{the}\:{proof}\: \\ $$$${assumed}\:{all}\:{the}\:{terms}\:{are}\:{defined},\:{that} \\ $$$${additional}\:{condition}\:{could}\:{have}\:{been}\:{given}. \\ $$
Commented by Rasheed.Sindhi last updated on 27/Feb/24
$${yes}\:{sir},\:{additional}\:{condition}\:{must} \\ $$$${be}\:{given}. \\ $$$${BTW}\:{do}\:{you}\:{think}\:{the}\:{proof}\:{correct}? \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{no}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined} \\ $$$$ \\ $$$$\frac{\mathrm{bc}}{\mathrm{a}^{\mathrm{2}} +\mathrm{2bc}}=\frac{\mathrm{0}×{c}}{\mathrm{0}^{\mathrm{2}} +\mathrm{2}×\mathrm{0}×{c}}=\frac{\mathrm{0}}{\mathrm{0}}\:\rightarrow\left(\mathrm{not}\:\mathrm{defined}\right) \\ $$$$\frac{{ac}}{{b}^{\mathrm{2}} +\mathrm{2}{ac}}=\frac{\mathrm{0}×{c}}{\mathrm{0}^{\mathrm{2}} +\mathrm{2}×\mathrm{0}×\mathrm{0}}=\frac{\mathrm{0}}{\mathrm{0}}\rightarrow\left(\mathrm{not}\:\mathrm{defined}\right) \\ $$$$\frac{{ab}}{{c}^{\mathrm{2}} +\mathrm{2}{ab}}=\frac{\mathrm{0}}{\mathrm{1}+\mathrm{0}}=\mathrm{0} \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{No}\:\mathrm{concentrate}\:\mathrm{well} \\ $$
Commented by A5T last updated on 27/Feb/24
$${Did}\:{I}\:{claim}\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)\:{was}\:{defined}?\:{I}\:{guess}\:{you} \\ $$$${are}\:{the}\:{one}\:{who}\:{should}\:{concentrate}\:{well}. \\ $$
Commented by A5T last updated on 27/Feb/24
$${The}\:{statement}\:{is}\:{correct}\:{provided}\:{all}\:{the}\:{terms} \\ $$$${are}\:{defined}.\:{I}\:{have}\:{a}\:{different}\:{proof}\:{below} \\ $$$${by}\:{expansion}\:{and}\:{simplification}. \\ $$
Commented by Frix last updated on 27/Feb/24
$$\mathrm{It}'\mathrm{s}\:\mathrm{claimed}\:{a},\:{b},\:{c}\:\in\mathbb{R}.\:\mathrm{Thus}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{true}\:\mathrm{in} \\ $$$$\mathrm{some}\:\mathrm{cases}.\:\mathrm{It}\:\mathrm{must}\:\mathrm{be}\:\mathrm{stated}\:\mathrm{when}\:\mathrm{exactly} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{otherwise}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{is}\:\mathrm{incomplete}. \\ $$
Commented by A5T last updated on 27/Feb/24
$${The}\:{statement}\:{is}\:{true}\:{when}\:{none}\:{of}\:{a}^{\mathrm{2}} +\mathrm{2}{bc}, \\ $$$${b}^{\mathrm{2}} +\mathrm{2}{ac},{c}^{\mathrm{2}} +\mathrm{2}{ab}\:{is}\:\mathrm{0}\:{or}\:{otherwise}\:{when}\:{all}\:{of} \\ $$$$\frac{{bc}}{{a}^{\mathrm{2}} +\mathrm{2}{bc}};\frac{{ac}}{{b}^{\mathrm{2}} +\mathrm{2}{ac}};\frac{{ab}}{{c}^{\mathrm{2}} +\mathrm{2}{ab}}\:{are}\:{defined}. \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{hmmm}\:\mathrm{okay} \\ $$
Answered by A5T last updated on 27/Feb/24
$$=\frac{\Sigma\left({b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{ab}^{\mathrm{4}} {c}+\mathrm{2}{abc}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{8}\Pi{a}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)}{\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)}=\mathrm{1} \\ $$$$ \\ $$$$\underline{{Details}:} \\ $$$$\Sigma\left[{bc}\left({b}^{\mathrm{2}} +\mathrm{2}{ac}\right)\left({c}^{\mathrm{2}} +\mathrm{2}{ab}\right)\right] \\ $$$$=\Sigma\left({b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{2}{ab}^{\mathrm{4}} {c}+\mathrm{2}{abc}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \right) \\ $$$$=\Sigma{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\Sigma\mathrm{2}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} \right)+\mathrm{12}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$={a}^{\mathrm{3}} {b}^{\mathrm{3}} +{b}^{\mathrm{3}} {c}^{\mathrm{3}} +{c}^{\mathrm{3}} {a}^{\mathrm{3}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{12}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$\left({ab}+{bc}\right)^{\mathrm{3}} +\left({ac}\right)^{\mathrm{3}} −\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ab}+{bc}\right)+\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right)+\mathrm{12}\Pi{a}^{\mathrm{2}} \\ $$$$=−\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ab}+{bc}\right)−\mathrm{3}{ab}^{\mathrm{2}} {c}\left({ca}\right)+\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{12}\Pi{a}^{\mathrm{2}} +\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right) \\ $$$$=\mathrm{15}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left(\Sigma{a}^{\mathrm{3}} \right) \\ $$$$ \\ $$$$\left({a}^{\mathrm{2}} +\mathrm{2}{bc}\right)\left({b}^{\mathrm{2}} +\mathrm{2}{ac}\right)\left({c}^{\mathrm{2}} +\mathrm{2}{ab}\right) \\ $$$$=\left({a}^{\mathrm{2}} +\mathrm{2}{bc}\right)\left({b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{ab}^{\mathrm{3}} +\mathrm{2}{ac}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} {bc}\right) \\ $$$$={a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{3}} {b}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{3}} {bc}+\mathrm{2}{b}^{\mathrm{3}} {c}^{\mathrm{3}} +\mathrm{4}{ab}^{\mathrm{4}} {c} \\ $$$$+\mathrm{4}{abc}^{\mathrm{4}} +\mathrm{8}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$=\mathrm{7}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} +\mathrm{4}{abc}\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)+\mathrm{8}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$
Commented by York12 last updated on 27/Feb/24
$$\mathrm{Perfect}\:\mathrm{sir}\:! \\ $$