Question Number 204800 by sonukgindia last updated on 27/Feb/24
Answered by mr W last updated on 27/Feb/24
Commented by mr W last updated on 27/Feb/24
$${r}={radius}\:{of}\:{circles}=\mathrm{1} \\ $$$${s}={side}\:{length}\:{of}\:{square} \\ $$$${a},\:{b}={parameters}\:{of}\:{ellipse} \\ $$$${a}=\mathrm{2}{b}+{r} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${C}\left({b}+{r},\:\mathrm{0}\right) \\ $$$$\left({x}−{b}−{r}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} −\left({x}−{b}−{r}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \left({b}+{r}\right){x}+\mathrm{2}{a}^{\mathrm{2}} {b}\left({b}+{r}\right)=\mathrm{0} \\ $$$$\Delta={a}^{\mathrm{4}} \left({b}+{r}\right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {b}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({b}+{r}\right)=\mathrm{0} \\ $$$${a}^{\mathrm{2}} \left({r}−{b}\right)+\mathrm{2}{b}^{\mathrm{3}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{b}+{r}\right)^{\mathrm{2}} \left({r}−{b}\right)+\mathrm{2}{b}^{\mathrm{3}} =\mathrm{0} \\ $$$$\left(\frac{{b}}{{r}}\right)^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{b}}{{r}}\right)−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{b}}{{r}}=\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)=\frac{\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{6}}\right)}{\mathrm{4}}=\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${s}=\mathrm{2}{a}=\mathrm{2}\left(\mathrm{2}{b}+{r}\right) \\ $$$$\frac{{s}}{{r}}=\mathrm{2}\left(\mathrm{1}+\mathrm{1}+\sqrt{\mathrm{3}}\right)=\mathrm{2}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right) \\ $$$${s}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)\approx\mathrm{55}.\mathrm{7128} \\ $$
Commented by mr W last updated on 27/Feb/24
Commented by es last updated on 28/Feb/24
$${why}\:{the}\:{focal}\:{point}\:{of} \\ $$$$\:{ellipse}\:\:{is}\:{center}\:{of}\:{circle}? \\ $$
Commented by mr W last updated on 28/Feb/24
$${but}\:{here} \\ $$$${center}\:{of}\:{circle}\:\neq\:{focus}\:{of}\:{ellipse} \\ $$