Question Number 204802 by Faetmaaa last updated on 27/Feb/24
$$\mathrm{Wi}-\mathrm{Fi}\:\mathrm{code}\:\mathrm{problem}: \\ $$$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} \left({x}^{\mathrm{3}} \mathrm{cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\mathrm{d}{x} \\ $$
Answered by TonyCWX08 last updated on 28/Feb/24
$$ \\ $$$${Expand}\:{The}\:{Integral} \\ $$$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left({x}^{\mathrm{3}} \mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\right){dx}+\frac{\mathrm{1}}{\mathrm{2}}\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$${Let}\:{x}^{\mathrm{3}} \mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:=\:{f}\left({x}\right) \\ $$$${Observe}\:{That} \\ $$$${f}\left(−{x}\right)\:=\:\left(−{x}\right)^{\mathrm{3}} \mathrm{cos}\:\left(\frac{−{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\left(−{x}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−{x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−{f}\left({x}\right) \\ $$$${Conclusion}:\:{f}\left({x}\right)\:{Is}\:{An}\:{Odd}\:{Function} \\ $$$${Know}\:\underset{−{a}} {\overset{{a}} {\int}}\left({Odd}\:{Function}\right){dx}\:=\:\mathrm{0} \\ $$$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left({x}^{\mathrm{3}} \mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\right){dx}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx} \\ $$$${Observe}\:{That} \\ $$$$\sqrt{\mathrm{4}−{x}^{\mathrm{2}} \:\:}{Is}\:{A}\:{Semicircle}\:{With}\:{Radius}\:\mathrm{2} \\ $$$${So},\:{Area}\:{Of}\:{The}\:{Semicircle}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\mathrm{2}\right)^{\mathrm{2}} =\mathrm{2}\pi \\ $$$$\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\pi\right)=\pi \\ $$