Menu Close

A-rectangular-enclosure-is-to-be-made-against-a-straight-wall-using-three-lengths-of-fencing-The-total-length-of-the-fencing-available-is-50m-Show-that-the-area-of-the-enclosure-is-50x-2x-2-wher




Question Number 204826 by necx122 last updated on 28/Feb/24
A rectangular enclosure is to be made  against a straight wall using three  lengths of fencing. The total length of  the fencing available is 50m. Show  that the area of the enclosure is  50x − 2x^2 , where x is the length of the  sides perpendicular to the wall. Hence  find the maximum area of the  enclosure.
$${A}\:{rectangular}\:{enclosure}\:{is}\:{to}\:{be}\:{made} \\ $$$${against}\:{a}\:{straight}\:{wall}\:{using}\:{three} \\ $$$${lengths}\:{of}\:{fencing}.\:{The}\:{total}\:{length}\:{of} \\ $$$${the}\:{fencing}\:{available}\:{is}\:\mathrm{50}{m}.\:{Show} \\ $$$${that}\:{the}\:{area}\:{of}\:{the}\:{enclosure}\:{is} \\ $$$$\mathrm{50}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} ,\:{where}\:{x}\:{is}\:{the}\:{length}\:{of}\:{the} \\ $$$${sides}\:{perpendicular}\:{to}\:{the}\:{wall}.\:{Hence} \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the} \\ $$$${enclosure}. \\ $$
Commented by mr W last updated on 29/Feb/24
we get  R=(√((a^2 +b^2 +c^2 )/3)) sin {(π/3)+(1/3)sin^(−1) [abc((3/(a^2 +b^2 +c^2 )))^(3/2) ]}     =(√((10^2 +15^2 +25^2 )/3)) sin {(π/3)+(1/3)sin^(−1) [10×15×25×((3/(10^2 +15^2 +25^2 )))^(3/2) ]}     ≈17.0977  AD=d=2R≈34.1594  s=((10+15+25+34.1594)/2)=42.0977  [ABCD]_(max) =(√((42.0977−10)(42.0977−15)(42.0977−25)(42.0977−34.1594)))                            =343.586 m^2
$${we}\:{get} \\ $$$${R}=\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{3}}}\:\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \left[{abc}\left(\frac{\mathrm{3}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]\right\} \\ $$$$\:\:\:=\sqrt{\frac{\mathrm{10}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{25}^{\mathrm{2}} }{\mathrm{3}}}\:\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \left[\mathrm{10}×\mathrm{15}×\mathrm{25}×\left(\frac{\mathrm{3}}{\mathrm{10}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{25}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]\right\} \\ $$$$\:\:\:\approx\mathrm{17}.\mathrm{0977} \\ $$$${AD}={d}=\mathrm{2}{R}\approx\mathrm{34}.\mathrm{1594} \\ $$$${s}=\frac{\mathrm{10}+\mathrm{15}+\mathrm{25}+\mathrm{34}.\mathrm{1594}}{\mathrm{2}}=\mathrm{42}.\mathrm{0977} \\ $$$$\left[{ABCD}\right]_{{max}} =\sqrt{\left(\mathrm{42}.\mathrm{0977}−\mathrm{10}\right)\left(\mathrm{42}.\mathrm{0977}−\mathrm{15}\right)\left(\mathrm{42}.\mathrm{0977}−\mathrm{25}\right)\left(\mathrm{42}.\mathrm{0977}−\mathrm{34}.\mathrm{1594}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{343}.\mathrm{586}\:{m}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 29/Feb/24
it is found out that the area of the  enclosure is maximum when the  fence follows a circle with diameter  on the wall.
$${it}\:{is}\:{found}\:{out}\:{that}\:{the}\:{area}\:{of}\:{the} \\ $$$${enclosure}\:{is}\:{maximum}\:{when}\:{the} \\ $$$${fence}\:{follows}\:{a}\:{circle}\:{with}\:{diameter} \\ $$$${on}\:{the}\:{wall}. \\ $$
Commented by mr W last updated on 29/Feb/24
Commented by mr W last updated on 29/Feb/24
the absolute maximum area we can  get with a total length of fence of  50 m is when the fence forms a  semi−circle.  R=((50)/π)  Area_(max) =((πR^2 )/2)=((50^2 )/(2π))≈397.887 m^2
$${the}\:{absolute}\:{maximum}\:{area}\:{we}\:{can} \\ $$$${get}\:{with}\:{a}\:{total}\:{length}\:{of}\:{fence}\:{of} \\ $$$$\mathrm{50}\:{m}\:{is}\:{when}\:{the}\:{fence}\:{forms}\:{a} \\ $$$${semi}−{circle}. \\ $$$${R}=\frac{\mathrm{50}}{\pi} \\ $$$${Area}_{{max}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{50}^{\mathrm{2}} }{\mathrm{2}\pi}\approx\mathrm{397}.\mathrm{887}\:{m}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 28/Feb/24
a more challenging version of the  question:  if the three lengthes of the fencing  are 10m, 15m and 25m respectively.  what is the largest area of the  enclosure we can get?
$${a}\:{more}\:{challenging}\:{version}\:{of}\:{the} \\ $$$${question}: \\ $$$${if}\:{the}\:{three}\:{lengthes}\:{of}\:{the}\:{fencing} \\ $$$${are}\:\mathrm{10}{m},\:\mathrm{15}{m}\:{and}\:\mathrm{25}{m}\:{respectively}. \\ $$$${what}\:{is}\:{the}\:{largest}\:{area}\:{of}\:{the} \\ $$$${enclosure}\:{we}\:{can}\:{get}? \\ $$
Commented by necx122 last updated on 28/Feb/24
We′ll await your beautiful solution to  this as you solve dear Mr. W
$${We}'{ll}\:{await}\:{your}\:{beautiful}\:{solution}\:{to} \\ $$$${this}\:{as}\:{you}\:{solve}\:{dear}\:{Mr}.\:{W} \\ $$
Commented by mr W last updated on 29/Feb/24
we can see this is larger than the  maximum area of the rectangular  enclosure 312.5 m^2 .
$${we}\:{can}\:{see}\:{this}\:{is}\:{larger}\:{than}\:{the} \\ $$$${maximum}\:{area}\:{of}\:{the}\:{rectangular} \\ $$$${enclosure}\:\mathrm{312}.\mathrm{5}\:{m}^{\mathrm{2}} . \\ $$
Commented by necx122 last updated on 29/Feb/24
My goodness! I've never encountered that formula you used. Thank you, I'll research it.
Commented by mr W last updated on 29/Feb/24
i have derived that formula by myself.  so i am not sure if you can find it  somewhere else. please let me know  what you found in your research.
$${i}\:{have}\:{derived}\:{that}\:{formula}\:{by}\:{myself}. \\ $$$${so}\:{i}\:{am}\:{not}\:{sure}\:{if}\:{you}\:{can}\:{find}\:{it} \\ $$$${somewhere}\:{else}.\:{please}\:{let}\:{me}\:{know} \\ $$$${what}\:{you}\:{found}\:{in}\:{your}\:{research}. \\ $$
Commented by MathematicalUser2357 last updated on 04/Mar/24
(√((10^2 +15^2 −25^2 )/3))sin[(π/3)+(1/3)sin^(−1) {10×15×25×((3/(10^2 +15^2 +25^2 )))^(3/2) }]???
$$\sqrt{\frac{\mathrm{10}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} −\mathrm{25}^{\mathrm{2}} }{\mathrm{3}}}\mathrm{sin}\left[\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \left\{\mathrm{10}×\mathrm{15}×\mathrm{25}×\left(\frac{\mathrm{3}}{\mathrm{10}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{25}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right\}\right]??? \\ $$
Commented by mr W last updated on 04/Mar/24
what do you want to ask concretely?
$${what}\:{do}\:{you}\:{want}\:{to}\:{ask}\:{concretely}? \\ $$
Answered by Rasheed.Sindhi last updated on 28/Feb/24
Let x, y are two dimentions  Three sides=  2x+y=50⇒y=50−2x  Area of enclosure  =xy=x(50−2x)=50x−2x^2
$${Let}\:{x},\:{y}\:{are}\:{two}\:{dimentions} \\ $$$${Three}\:{sides}= \\ $$$$\mathrm{2}{x}+{y}=\mathrm{50}\Rightarrow{y}=\mathrm{50}−\mathrm{2}{x} \\ $$$${Area}\:{of}\:{enclosure} \\ $$$$={xy}={x}\left(\mathrm{50}−\mathrm{2}{x}\right)=\mathrm{50}{x}−\mathrm{2}{x}^{\mathrm{2}} \\ $$
Commented by necx122 last updated on 28/Feb/24
Thank you sir. I can readily proceed  from here.
$${Thank}\:{you}\:{sir}.\:{I}\:{can}\:{readily}\:{proceed} \\ $$$${from}\:{here}. \\ $$
Commented by mr W last updated on 29/Feb/24
maximum=2×12.5^2 =312.5 m^2
$${maximum}=\mathrm{2}×\mathrm{12}.\mathrm{5}^{\mathrm{2}} =\mathrm{312}.\mathrm{5}\:{m}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *