Question Number 204844 by mr W last updated on 28/Feb/24
$${find}\:\lfloor\underset{{n}=\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\rfloor=? \\ $$
Commented by Frix last updated on 28/Feb/24
$$\mathrm{16} \\ $$
Answered by witcher3 last updated on 29/Feb/24
$$\int_{\mathrm{1}} ^{\mathrm{80}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\mathrm{dx}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{79}} {\sum}}\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\mathrm{1}}}\leqslant\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\mathrm{dx}\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}}};\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{79}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\mathrm{1}}}\leqslant\int_{\mathrm{1}} ^{\mathrm{80}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}}\leqslant\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{79}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}}} \\ $$$$\mathrm{S}=\underset{\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}\Rightarrow\mathrm{S}−\mathrm{1}\leqslant\int_{\mathrm{1}} ^{\mathrm{80}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}}\leqslant\mathrm{S}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{80}}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{80}}}+\int_{\mathrm{1}} ^{\mathrm{80}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}}\leqslant\mathrm{S}\leqslant\mathrm{1}+\int_{\mathrm{1}} ^{\mathrm{80}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}} \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{80}}−\mathrm{2}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{80}}}\leqslant\mathrm{S}\leqslant\mathrm{2}\sqrt{\mathrm{80}}−\mathrm{1} \\ $$$$\mathrm{2}\sqrt{\mathrm{80}}<\mathrm{18} \\ $$$$ \\ $$$$\mathrm{2}\sqrt{\mathrm{80}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{80}}}\geqslant\mathrm{18} \\ $$$$\Leftrightarrow\frac{\mathrm{161}}{\mathrm{18}}\geqslant\sqrt{\mathrm{80}} \\ $$$$\Leftrightarrow\mathrm{161}^{\mathrm{2}} \geqslant\mathrm{80}.\mathrm{18}^{\mathrm{2}} \:\:\mathrm{True} \\ $$$$\Rightarrow\mathrm{16}\leqslant\mathrm{S}\leqslant\mathrm{17} \\ $$$$\Rightarrow\left[\mathrm{S}\right]=\mathrm{16} \\ $$$$ \\ $$
Answered by MM42 last updated on 29/Feb/24
$$\mathrm{2}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)<\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}<\mathrm{2}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$\mathrm{2}\left(\sqrt{\mathrm{4}}−\sqrt{\mathrm{3}}\right)<\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}<\mathrm{2}\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right) \\ $$$$\mathrm{2}\left(\sqrt{\mathrm{5}}−\sqrt{\mathrm{4}}\right)<\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}}}<\mathrm{2}\left(\sqrt{\mathrm{4}}−\sqrt{\mathrm{3}}\right) \\ $$$$\vdots \\ $$$$\mathrm{2}\left(\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}\right)<\frac{\mathrm{1}}{\:\sqrt{{n}}}<\mathrm{2}\left(\sqrt{{n}}−\sqrt{{n}−\mathrm{1}}\right) \\ $$$$\Rightarrow\mathrm{2}\left(\sqrt{{n}+\mathrm{1}}−\sqrt{\mathrm{2}}\right)<\underset{{n}=\mathrm{2}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}<\mathrm{2}\left(\sqrt{{n}}−\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{19}−\mathrm{2}\sqrt{\mathrm{2}}<\underset{{n}=\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}<\mathrm{2}\sqrt{\mathrm{80}}−\mathrm{1} \\ $$$$\Rightarrow\mathrm{16}.\mathrm{17}…<\underset{{n}=\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}<\mathrm{16}.\mathrm{88}… \\ $$$$\Rightarrow\left[\underset{{n}=\mathrm{1}} {\overset{\mathrm{80}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\right]=\mathrm{16}\:\:\checkmark \\ $$$$ \\ $$