Menu Close

Racionalizar-el-denominador-1-x-x-1-3-x-




Question Number 204841 by Simurdiera last updated on 28/Feb/24
Racionalizar el denominador  ((1 − x)/( (x)^(1/3)  − (√(√x))))
$${Racionalizar}\:{el}\:{denominador} \\ $$$$\frac{\mathrm{1}\:−\:{x}}{\:\sqrt[{\mathrm{3}}]{{x}}\:−\:\sqrt{\sqrt{{x}}}} \\ $$
Commented by Frix last updated on 28/Feb/24
((1−x)/(x^(1/3) −x^(1/4) ))=−(((x^((11)/(12)) +x^(5/6) +x^(3/4) )/x)+Σ_(k=0) ^8 x^(k/(12)) )
$$\frac{\mathrm{1}−{x}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }=−\left(\frac{{x}^{\frac{\mathrm{11}}{\mathrm{12}}} +{x}^{\frac{\mathrm{5}}{\mathrm{6}}} +{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }{{x}}+\underset{{k}=\mathrm{0}} {\overset{\mathrm{8}} {\sum}}{x}^{\frac{{k}}{\mathrm{12}}} \right) \\ $$
Answered by A5T last updated on 28/Feb/24
(((x−1)((x)^(1/4) +(x)^(1/3) )=p)/( ((x)^(1/4) −(x)^(1/3) )((x)^(1/4) +(x)^(1/3) )))=((p((√x)+(x^2 )^(1/3) ))/( ((√x)−(x^2 )^(1/3) )((√x)+(x^2 )^(1/3) )))  =((p((√x)+(x^2 )^(1/3) ))/(x−(x^4 )^(1/3) =x(1−(x)^(1/3) )))=((p((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/(x(1−(x)^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1)))  =(((x−1)((x)^(1/4) +(x)^(1/3) )((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/(x(1−x)))  =((−((x)^(1/4) +(x)^(1/3) )((√x)+(x^2 )^(1/3) )((x^2 )^(1/3) +(x)^(1/3) +1))/x)
$$\frac{\left({x}−\mathrm{1}\right)\left(\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}}\right)={p}}{\:\left(\sqrt[{\mathrm{4}}]{{x}}−\sqrt[{\mathrm{3}}]{{x}}\right)\left(\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}}\right)}=\frac{{p}\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)}{\:\left(\sqrt{{x}}−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)} \\ $$$$=\frac{{p}\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)}{{x}−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{4}} }={x}\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\right)}=\frac{{p}\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{{x}}+\mathrm{1}\right)}{{x}\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{{x}}+\mathrm{1}\right)} \\ $$$$=\frac{\left({x}−\mathrm{1}\right)\left(\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}}\right)\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{{x}}+\mathrm{1}\right)}{{x}\left(\mathrm{1}−{x}\right)} \\ $$$$=\frac{−\left(\sqrt[{\mathrm{4}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}}\right)\left(\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{{x}}+\mathrm{1}\right)}{{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *