Menu Close

lim-n-n-e-x-n-where-x-n-1-1-1-1-2-1-n-




Question Number 204879 by universe last updated on 09/Aug/24
     lim_(n→∞)  n!(e−x_n ) = ?    where x_(n ) = 1+(1/(1!))+(1/(2!))+...+(1/(n!))
limnn!(exn)=?wherexn=1+11!+12!++1n!
Commented by mr W last updated on 01/Mar/24
you mean n→∞ ?
youmeann?
Commented by universe last updated on 01/Mar/24
yes sir
yessir
Answered by Frix last updated on 01/Mar/24
???  x_n =Σ_(k=0) ^n (1/(k!)) ⇒ x_0 =1  0!(e−x_0 )=1×(e−1)=e−1
???xn=nk=01k!x0=10!(ex0)=1×(e1)=e1
Answered by witcher3 last updated on 02/Mar/24
e−x_n =Σ_(k≥n+1) (1/(k!))=(1/((n+1)!))Σ_(k≥n+1) (((n+1)!)/(k!))=(1/((n+1)!))(Σ_(k≥n+1) (((n+1)!)/(k!)))  Σ_(k≥n+1) (((n+1)!)/(k!))=(1+(1/((n+2)))+(1/((n+2)(n+3)))=  Σ_(k≥n+1) (((n+1)!)/(k!))≤1+Σ_(k≥n+2) (1/((n+2)^(k−n) )) ≤1+Σ_(k≥2) (1/2^k )=(3/2)  ;k+1≥2;n≥1  e−x_n =(1/((n+1)!))Σ(((n+1)!)/(k!))≤(3/(2(n+1)!))  ⇒n!∣e−x_n ∣≤(3/(2(n+1)))  0≤lim_(n→∞)   n!∣e−x_n ∣≤lim_(n→∞)  (3/(2(n+1)))=0
exn=kn+11k!=1(n+1)!kn+1(n+1)!k!=1(n+1)!(kn+1(n+1)!k!)kn+1(n+1)!k!=(1+1(n+2)+1(n+2)(n+3)=kn+1(n+1)!k!1+kn+21(n+2)kn1+k212k=32;k+12;n1exn=1(n+1)!Σ(n+1)!k!32(n+1)!n!exn∣⩽32(n+1)0limnn!exn∣⩽limn32(n+1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *