Question Number 204878 by mnjuly1970 last updated on 29/Feb/24

Answered by witcher3 last updated on 29/Feb/24
![let f(x)=e^x^2 f′(x)=2xe^x^2 ;f′′(x)=(2+4x^2 )e^x^2 ≥0 f is convex Let C_f ={(x,f(x));x∈R^2 } Γ: tangent to Cf at(1/2) Γ=f′((1/2))(x−(1/2))+f((1/2))=e^(1/4) (x−(1/2))+e^(1/4) =e^(1/4) x+(e^(1/4) /2);Since f is convex⇒f(x)≥xe^(1/4) +(e^(1/4) /2) ⇒∫_0 ^1 e^x^2 dx≥∫_0 ^1 (xe^(1/4) +(e^(1/4) /2))dx=e^(1/4) =(e)^(1/4) f(x)=e^x^2 applie lagrange theorem in [0,t] ⇒∃_c ∈[0,t] suche f(t)=f(0)+tf′(c) f′′(x)≥0⇒f′ is increase ⇒f′(c)≤f′(t) ⇒f(t)=1+t(2ce^c^2 )≤1+2t^2 e^t^2 ⇒∫_0 ^1 f(t)dt≤∫_0 ^1 (1+2t^2 e^t^2 )dt=∫_0 ^1 1dt+∫_0 ^1 t.(2te^t^2 )dt u=t,v′=2te^t^2 IBP⇒ ∫_0 ^1 e^t^2 dt≤1+[te^t^2 ]_0 ^1 −∫_0 ^1 e^t^2 dt⇒2∫_0 ^1 e^t^2 dt≤1+e ⇒∫_0 ^1 e^t^2 dt≤((1+e)/2) ⇔(e)^(1/4) ≤∫_0 ^1 e^t^2 dt≤((1+e)/2)](https://www.tinkutara.com/question/Q204880.png)
Commented by mnjuly1970 last updated on 29/Feb/24

Commented by witcher3 last updated on 29/Feb/24

Answered by mr W last updated on 29/Feb/24

Commented by mr W last updated on 01/Mar/24
![x>0 y=e^x^2 ⇒y(0)=1, y(1)=e y′=2xe^x^2 >0 ⇒↗ y′′=2(1+2x)e^x^2 >0 ⇒ ⌣ ∫_0 ^1 e^x^2 dx=area under blue curve <area under red line >area under green line red area =((1+e)/2)×1=((1+e)/2) tangent at x=p: y=[1+2p(p−x)]e^p^2 y(0)=(1+2p^2 )e^p^2 y(1)=(1+2p^2 −2p)e^p^2 green area =((y(0)+y(1))/2)×1=(1+2p^2 −p)e^p^2 with p=(1/2): green area=(1+2×((1/2))^2 −(1/2))e^(((1/2))^2 ) =e^(1/4) green area < blue area < red area ⇒e^(1/4) < ∫_0 ^1 e^x^2 dx <((1+e)/2)](https://www.tinkutara.com/question/Q204884.png)
Commented by mnjuly1970 last updated on 01/Mar/24
