Menu Close

prove-that-e-1-4-lt-0-1-e-t-2-dt-lt-1-e-2-




Question Number 204878 by mnjuly1970 last updated on 29/Feb/24
    prove that:        (e)^(1/4)  < ∫_0 ^( 1) e^( t^2 ) dt< ((1 + e)/2)
provethat:e4<01et2dt<1+e2
Answered by witcher3 last updated on 29/Feb/24
let f(x)=e^x^2    f′(x)=2xe^x^2  ;f′′(x)=(2+4x^2 )e^x^2  ≥0  f is convex Let C_f ={(x,f(x));x∈R^2 }  Γ: tangent to Cf at(1/2)  Γ=f′((1/2))(x−(1/2))+f((1/2))=e^(1/4) (x−(1/2))+e^(1/4)   =e^(1/4) x+(e^(1/4) /2);Since f is convex⇒f(x)≥xe^(1/4) +(e^(1/4) /2)  ⇒∫_0 ^1 e^x^2  dx≥∫_0 ^1 (xe^(1/4) +(e^(1/4) /2))dx=e^(1/4) =(e)^(1/4)   f(x)=e^x^2   applie lagrange theorem in [0,t]  ⇒∃_c ∈[0,t] suche f(t)=f(0)+tf′(c)  f′′(x)≥0⇒f′ is increase ⇒f′(c)≤f′(t)  ⇒f(t)=1+t(2ce^c^2  )≤1+2t^2 e^t^2    ⇒∫_0 ^1 f(t)dt≤∫_0 ^1 (1+2t^2 e^t^2  )dt=∫_0 ^1 1dt+∫_0 ^1 t.(2te^t^2  )dt  u=t,v′=2te^t^2   IBP⇒  ∫_0 ^1 e^t^2  dt≤1+[te^t^2  ]_0 ^1 −∫_0 ^1 e^t^2  dt⇒2∫_0 ^1 e^t^2  dt≤1+e  ⇒∫_0 ^1 e^t^2  dt≤((1+e)/2)  ⇔(e)^(1/4) ≤∫_0 ^1 e^t^2  dt≤((1+e)/2)
letf(x)=ex2f(x)=2xex2;f(x)=(2+4x2)ex20fisconvexLetCf={(x,f(x));xR2}Γ:tangenttoCfat12Γ=f(12)(x12)+f(12)=e14(x12)+e14=e14x+e142;Sincefisconvexf(x)xe14+e14201ex2dx01(xe14+e142)dx=e14=e4f(x)=ex2applielagrangetheoremin[0,t]c[0,t]suchef(t)=f(0)+tf(c)f(x)0fisincreasef(c)f(t)f(t)=1+t(2cec2)1+2t2et201f(t)dt01(1+2t2et2)dt=011dt+01t.(2tet2)dtu=t,v=2tet2IBP01et2dt1+[tet2]0101et2dt201et2dt1+e01et2dt1+e2e401et2dt1+e2
Commented by mnjuly1970 last updated on 29/Feb/24
thanks alot sir
thanksalotsir
Commented by witcher3 last updated on 29/Feb/24
withe pleasur barak[alah fik
withepleasurbarak[alahfik
Answered by mr W last updated on 29/Feb/24
Commented by mr W last updated on 01/Mar/24
x>0  y=e^x^2   ⇒y(0)=1, y(1)=e  y′=2xe^x^2  >0 ⇒↗  y′′=2(1+2x)e^x^2  >0 ⇒ ⌣  ∫_0 ^1 e^x^2  dx=area under blue curve                  <area under red line                   >area under green line   red area =((1+e)/2)×1=((1+e)/2)  tangent at x=p:  y=[1+2p(p−x)]e^p^2    y(0)=(1+2p^2 )e^p^2    y(1)=(1+2p^2 −2p)e^p^2    green area =((y(0)+y(1))/2)×1=(1+2p^2 −p)e^p^2    with p=(1/2):  green area=(1+2×((1/2))^2 −(1/2))e^(((1/2))^2 ) =e^(1/4)   green area < blue area < red area  ⇒e^(1/4) < ∫_0 ^1 e^x^2  dx <((1+e)/2)
x>0y=ex2y(0)=1,y(1)=ey=2xex2>0↗y=2(1+2x)ex2>001ex2dx=areaunderbluecurve<areaunderredline>areaundergreenlineredarea=1+e2×1=1+e2tangentatx=p:y=[1+2p(px)]ep2y(0)=(1+2p2)ep2y(1)=(1+2p22p)ep2greenarea=y(0)+y(1)2×1=(1+2p2p)ep2withp=12:greenarea=(1+2×(12)212)e(12)2=e14greenarea<bluearea<redareae14<01ex2dx<1+e2
Commented by mnjuly1970 last updated on 01/Mar/24
thank you so much sir W
thankyousomuchsirW

Leave a Reply

Your email address will not be published. Required fields are marked *