Menu Close

Question-204890




Question Number 204890 by mr W last updated on 29/Feb/24
Commented by mr W last updated on 29/Feb/24
ABCD is a square with side length 2.  E is midpoint of CD, F is midpoint  of AD. find AP.
$${ABCD}\:{is}\:{a}\:{square}\:{with}\:{side}\:{length}\:\mathrm{2}. \\ $$$${E}\:{is}\:{midpoint}\:{of}\:{CD},\:{F}\:{is}\:{midpoint} \\ $$$${of}\:{AD}.\:{find}\:{AP}. \\ $$
Answered by Frix last updated on 01/Mar/24
A=(−1∣−1), B=(1∣−1), C=(1∣1), D=(−1∣1)  E=(0∣1); F=(−1∣0)  BE: y=−2x+1; CF: y=(x/2)+(1/2) ⇒ P=((1/5)∣(3/5))  ⇒ ∣AP∣=∣((6/5)∣(8/5))∣=2
$${A}=\left(−\mathrm{1}\mid−\mathrm{1}\right),\:{B}=\left(\mathrm{1}\mid−\mathrm{1}\right),\:{C}=\left(\mathrm{1}\mid\mathrm{1}\right),\:{D}=\left(−\mathrm{1}\mid\mathrm{1}\right) \\ $$$${E}=\left(\mathrm{0}\mid\mathrm{1}\right);\:{F}=\left(−\mathrm{1}\mid\mathrm{0}\right) \\ $$$${BE}:\:{y}=−\mathrm{2}{x}+\mathrm{1};\:{CF}:\:{y}=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{P}=\left(\frac{\mathrm{1}}{\mathrm{5}}\mid\frac{\mathrm{3}}{\mathrm{5}}\right) \\ $$$$\Rightarrow\:\mid{AP}\mid=\mid\left(\frac{\mathrm{6}}{\mathrm{5}}\mid\frac{\mathrm{8}}{\mathrm{5}}\right)\mid=\mathrm{2} \\ $$
Commented by mr W last updated on 01/Mar/24
��
Answered by mr W last updated on 01/Mar/24
Commented by mr W last updated on 01/Mar/24
we can easily prove that BE⊥CF.  ⇒ABPF is cyclic.  ∠APB=∠AFB=∠BEC=∠ABP  ⇒ΔABP is isosceles.  ⇒AP=AB=2 ✓
$${we}\:{can}\:{easily}\:{prove}\:{that}\:{BE}\bot{CF}. \\ $$$$\Rightarrow{ABPF}\:{is}\:{cyclic}. \\ $$$$\angle{APB}=\angle{AFB}=\angle{BEC}=\angle{ABP} \\ $$$$\Rightarrow\Delta{ABP}\:{is}\:{isosceles}. \\ $$$$\Rightarrow{AP}={AB}=\mathrm{2}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *