Menu Close

calculate-0-1-x-1-x-dx-




Question Number 204902 by pticantor last updated on 01/Mar/24
calculate ∫_0 ^1 (√(x(1−x)))dx
calculate01x(1x)dx
Answered by witcher3 last updated on 01/Mar/24
y^2 +x^2 −x=0⇔y^2 +(x−(1/2))^2 =(1/4)  circle center ((1/2),0);R=(1/2)  S=π.(1/4);   our region is?y≥0  (S/2)=(π/8)
y2+x2x=0y2+(x12)2=14circlecenter(12,0);R=12S=π.14;ourregionis?y0S2=π8
Commented by pticantor last updated on 01/Mar/24
great   thks too much
greatthkstoomuch
Answered by Mathspace last updated on 01/Mar/24
I=∫_0 ^1 (√(x(1−x)))dx  x=sin^2 t ⇒I=∫_0 ^(π/2) (√(sin^2 t.cos^2 t))2sint cost dt  =2 ∫_0 ^(π/2) sin^2 t×cos^2 t dt  =2∫_0 ^(π/2) ((1/2)sin(2t))^2 dt  =(1/2)∫_0 ^(π/2) sin^2 (2t)dt  =(1/4)∫_0 ^(π/2) (1−cos(4t))dt  =(π/8)−(1/(16))[sin(4t)]_0 ^(π/2)   =(π/8)−0=(π/8)
I=01x(1x)dxx=sin2tI=0π2sin2t.cos2t2sintcostdt=20π2sin2t×cos2tdt=20π2(12sin(2t))2dt=120π2sin2(2t)dt=140π2(1cos(4t))dt=π8116[sin(4t)]0π2=π80=π8

Leave a Reply

Your email address will not be published. Required fields are marked *